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EXECUTIVE SUMMARY 

Monitoring of actual aircraft structural usage would increase rotorcraft safety enhancements 
provided by health and usage monitoring systems (HUMS) and could potentially reduce 
operating costs via usage-based maintenance (UBM) credits. Though flight regime recognition 
(RR) algorithms have been demonstrated, none have been fully validated or used to obtain UBM 
credit approval because of complex certification issues. The Federal Aviation Administration 
(FAA) has funded research and development (R&D) efforts to establish and demonstrate viable 
approaches for validating and certifying HUMS RR-enabled UBM credits. In a previous 
contract, Sikorsky Aircraft Corporation (SAC) defined an end-to-end UBM process that fulfills 
the objectives of Advisory Circular (AC) 29-2C and works with available HUMS. This effort 
included the development of an RR clustering approach for addressing identified shortcomings 
of current RR algorithms that can be applied through post-processing of HUMS data without 
having to modify existing RR onboard software. 

The subject FAA-funded R&D effort builds on the previous work, culminating in a flight test 
and fleet demonstration of several virtual usage monitoring technologies, including RR with 
clustering, virtual monitoring of loads (VML), and gross weight (GW) estimation, which can 
provide valuable insight into actual fleet usage and loads using existing HUMS aircraft 
parametric state parameters and without needing to integrate physical sensors. 

The technical work herein started with a component, load, and regime selection. From this 
analysis, two key loads were selected for instrumentation in the Army Communications-
Electronics Research, Development and Engineering Center (CERDEC) flight test that covered 
several life-limited dynamic components: the main rotor lateral stationary swashplate (MRLSS) 
axial load, which can be used to substantiate the gearbox housing, and the main rotor shaft 
extender bending load, which can be used to substantiate the main rotor shaft, shaft extender, and 
hub. Important regimes for these substantiating parameters, based on the component life 
sensitivity study, were turns and climbs. These regimes and loads became the focus of the flight 
test evaluation. 

Under separate FAA funding, a flight test program on a UH-60M aircraft was conducted by 
CERDEC. The primary objectives of this program were to provide validation data for RR, 
GW/center of gravity (CG), and VML algorithms, and to generate design of experiment data for 
the Army Research Laboratory to support a pilot sensitivity study. Climb and banked turn 
maneuvers were flown to support the development of RR clustering algorithms. These 
maneuvers differed from typical flight loads survey (FLS) maneuvers in that they included 
unique techniques to explore the boundaries of the regime definitions. The GW/CG estimation 
algorithms required level flight and out of ground effect (OGE)/in ground effect (IGE) hover 
maneuvers at several vehicle configurations. The VML algorithm validation for key 
substantiating parameters required focusing on the turn, climb, and dive regimes, which were 
identified as key fatigue life drivers. 

The RR clustering methods were applied to the CERDEC test data to show how raw RR data can 
be processed and refined in a way that is consistent with the UH-60M composite worst case 
(CWC) usage spectrum. Several RR clustering validation methods were demonstrated that use 

ix 



 

parametric truth regime definitions, flight regime load analysis, and flight test run log data. The 
flight test run log validation approach is demonstrated on existing UH-60M FLS test data. 

The VML and GW estimation algorithms were also applied to the CERDEC flight test data. Use 
of these models was shown to be a viable approach for monitoring actual aircraft usage and 
loads. While neither of these virtual methods is perfect, the error distributions are reasonable and  
well-behaved such that error models can be created for use in a probabilistic framework for 
establishing reliability factors to ensure safety and reliability associated with UBM processes and 
credits. 

An overview of UBM processes is provided, which describes current fatigue life management 
practices and relates the current process to various approaches to UBM. A proposed serial 
number UBM credit process is described, which includes a framework for maintaining 
equivalent reliability. 

The RR clustering algorithms developed from the CERDEC testing were then applied to fleet 
data and compared to the UH-60M CWC usage spectrum. To support this task, the U.S. Army 
Aviation Engineering Directorate provided SAC with three populations of sample fleet data from 
operational UH-60M aircraft. The RR clustering algorithm was shown to be a viable approach 
for refining raw RR output data to support both fleet-wide usage calculated retirement time 
(CRT) adjustments or individual tail number CRT adjustments without having to modify existing 
onboard software. The clustering algorithm provides a more realistic picture of helicopter usage 
than the baseline Integrated Vehicle Health Management System RR algorithms, even in the 
presence of a complex series of maneuvers. 

Applying these usage monitoring technologies to fleet data uncovered some challenges that are 
unique to an operational fleet environment. The focus of the work conducted in delivery order 
(DO) 0002 will be to apply these methods to operational fleet data within a production 
framework in support of a specific mock UBM certification that will be shown to be in 
compliance with AC 29-2C, MG-15. This effort is ongoing and will be documented in a separate 
technical report for that DO. 
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1.  INTRODUCTION 

One of the central goals of usage-based maintenance (UBM) is to change the maintenance 
paradigm from one that is currently flight-hour or schedule based to one that is based on usage 
and loads. For example, life-limited parts (LLPs) are currently retired based on the number of 
flight hours flown, regardless of whether the aircraft is only flown benignly (e.g., VIP transport) 
or is flown much more aggressively (e.g., cargo transport with many ground-air-ground cycles 
per hour). A certified UBM process that accurately monitors usage and loads would enable the 
attainment of retirement time credits (or debits) for LLPs based on measured aircraft 
configuration, usage, and loads rather than flight hours and the use of underlying conservative 
design assumptions. Virtual sensing methods that use measured aircraft state parameters have 
been developed previously by Sikorsky Aircraft Corporation (SAC) to monitor key parameters, 
including: regime recognition (RR) algorithms with associated clustering techniques; virtual 
monitoring of loads (VML); and gross weight (GW) and center of gravity (CG) estimation. The 
research documented herein focused on the application of these methods and algorithms to real 
flight test and fleet data to show the potential benefit of UBM and to identify challenges relevant 
to the certification of UBM processes and credits using these virtual usage and loads monitoring 
methods. 

Dynamic component retirement times are currently set by a rigorously defined fatigue damage 
calculation process that computes a calculated retirement time (CRT) from three basic inputs: 
component strength with reliability-based safety factors, a composite worst case (CWC) usage 
spectrum, and a load spectrum derived from flight tests. Component strength is generally derived 
from full-scale component fatigue testing. The CWC spectrum combines conservative 
assumptions on aircraft usage with high envelope loads. The usage typically is given in the form 
of a list of flight regimes, each of which is assigned either a percentage of total flight time or a 
rate of occurrence (maneuvers per 100 flight hours). Flight loads are developed in the flight loads 
survey (FLS), a comprehensive flight test program that exercises the extremes of aircraft 
performance to develop the highest expected loads for each regime. Each component is assigned 
one or more substantiating load parameters, which characterize the load states for that 
component’s critical failure mode. Common substantiating parameters for dynamic components 
are derived from calibrated bending and axial bridges, such as a main rotor shaft bending bridge 
or a push rod axial load bridge. They can also be based on more local stress/strain measurements 
when necessary. The three inputs (i.e., strength, usage, and loads) are then combined in a  
stress-life fatigue calculation, which results in the CRT. 

The Integrated Vehicle Health Management System (IVHMS) is the next generation system 
derived from the integrated mechanical diagnostics-health and usage monitoring systems  
(IMD-HUMS). The IVHMS is standard equipment on the SAC UH-60M aircraft, and the  
IMD-HUMS is standard equipment on the S-92 aircraft. Aside from recording a large quantity of 
aircraft-state parameters, such as airspeed, engine power measurements, and pilot control inputs, 
both the IVHMS and IMD-HUMS execute similar RR algorithms from these state parameters. 
These algorithms translate aircraft state measurements into regime classifications (e.g., climbing 
left turn or level flight at 0.8 VH), which can be used to better understand aircraft usage, which 
drives component retirement times. The result is a recorded time sequence of regimes flown for 
each flight. 
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Though the current onboard RR algorithms provide significant insight into the usage of 
operational aircraft, some shortcomings have been identified that must be overcome to develop a 
practical UBM process that can be certified for securing credits and benefits. One such issue is 
the frequent toggling of RR output data due to the precise second-by-second classification using 
state parameter data. To overcome some of the shortcomings of this system, additional off-board 
processing of these data is desired to enable existing onboard software capabilities to be 
exploited without the need to invest in costly onboard software changes. One such technique is 
called regime clustering. After being trained on a given dataset, this additional processing 
gathers regime time sequences into contiguous maneuvers or target regimes, which more 
accurately represent the aircraft usage both in terms of pilot intent and CWC design assumptions 
than the fine, second-by-second, granularity regime sequences produced by the IHVMS,  
IMD-HUMS, and similar systems. The regime clustering algorithms work by reprocessing the 
IVHMS RR sequence outputs into broader target regimes based on statistical and  
physics-/experience-based rules. 

The state parameters collected by the IVHMS and IMD-HUMS can also be processed off-board 
to estimate additional aircraft configuration parameters, such as GW and CG location. The 
algorithms involved can be grouped into two classes—physics-based and mathematical models. 
Both classes of algorithms operate only on a small subset of aircraft regimes, which are chosen 
to enhance algorithm accuracy. This typically is limited to hover and steady-level flight. In 
another off-board processing application of aircraft state parameter data, individual loads can be 
estimated in continuous time through VML algorithms. After being trained, these mathematical 
models recreate the readings of individual strain gages, bending bridges, or other load 
measurements that were included in the aircraft FLS as a substantiating parameter. If a given 
load is also a component substantiating parameter, it is possible to gain a better understanding of 
the remaining fatigue capacity of a component subjected to field usage. 

This report documents several tasks that were conducted to achieve a flight test and fleet 
demonstration of these usage and loads monitoring technologies. Because the FAA-funded 
research is in part collaboration with the Army Research Laboratory (ARL) and  
the Army Communications-Electronics Research, Development and Engineering Center 
(CERDEC) flight test organization, the UH-60M served as a representative application vehicle. 
Section 2 focuses on the selection of UH-60 components, regimes, and loads that would best 
demonstrate the application of these usage and loads monitoring technologies. Section 3 
describes the CERDEC UH-60M flight test planning and execution effort that generated unique 
data for which to demonstrate the usage monitoring technologies. Section 4 documents the 
application of regime clustering algorithms using the CERDEC flight test data with a focus on 
the validation process. Section 5 describes the application of VML and GW algorithms to the 
CERDEC flight test data. Section 6 describes the general process for achieving UBM credits on a 
serial number basis. Finally, section 7 describes the culminating task for which the RR clustering 
methods developed in section 4 were applied to a set of operational UH-60M fleet data. Results 
from this task were then compared to results from a similar effort conducted by the  
Army-Aviation Engineering Directorate (AED) on the same set of fleet data. 
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2.  COMPONENT AND REGIME SELECTION 

2.1  SELECTION OF CANDIDATE COMPONENTS—UH-60M 

The retirement times of dynamic components are generally set by either a fatigue damage 
methodology, commonly based on a stress-life (S/N) curve, or a maintenance concern. Those 
parts that have lifetimes set by maintenance concerns are usually marked as on-condition. 
Regardless, each component is assigned a CRT. The UH-60M has approximately 50 such 
components. 

If potential fatigue retirement-time benefits are desired as a result of the collection of actual 
loads or usage data, the list of 50 life-limited dynamic components can be narrowed down by 
eliminating all components that have been assigned unlimited retirement times with CRTs over 
20,000 flight hours. Any components which are replaced on-condition for reasons other than a 
CRT are also eliminated. Many such components are relatively low-value items, which are 
replaced during maintenance actions for higher-value components. Finally, any low-value 
components, such as bolts or bearings, are eliminated. Using this elimination process for the  
UH-60M results in the list of ten components, shown in table 1. These are not the only 
components to which usage and loads monitoring can provide benefit; rather, these are the 
components to which these methods can potentially provide significant retirement-time 
increases. Additional benefits can be obtained by increasing the fatigue lives of other low-value 
components. Such benefits are possible through, for instance, allowing improved synchronizing 
of required maintenance actions. These types of benefits are not considered in this report. 
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Table 1. High-value low-lifetime UH-60M dynamics components 

Life-Limited 
Component Part Number Failure Mode 

Substantiating 
Parameter 

IDGB Main Rotor Shaft 70351-38131-042 Potential,  
Non-Chafing 

Upper Main Rotor 
Shaft Bending (in-lb) 

(MRSBU1) 
Main Rotor Shaft 

Extender 
70351-08186-043 Attachment Shoulder, 

Chafing 
Upper Main Rotor 

Shaft Bending (in-lb) 
(MRSBU1) 

Main Rotor Growth 
Spindle (with Tierod) 

38023-10374-041 Thread Mode,  
Non-Chafing 

Main Rotor Spindle 
Undercut Stress 
(SPNT1R-4R, 

SPNTOR1R-1L) 
MR Cuff 70150-09209-042, 

70150-09209-043 
Potential Lug,  
Non-Chafing 

Main Rotor Cuff Lug 
Stress (MRCTELL) 

Expandable Pin 70103-08107-104 Potential Steel,  
Non-Chafing 

Main Rotor Cuff Lug 
Stress (MRCTELL) 

Main Rotor Hub 70103-08112-042 Hub Arm Observation 
Hole (Lag Side),  

Non-Chafing 

Derived Main Rotor 
Blade Flapping 
Angle, (Deg) 

(MRFLAPDP) 
MR Rotating 
Swashplate 

70104-08001-045 Pushrod Attachment 
Mode, Chafing 

Main Rotor Pushrod 
Load (lb) (MRPR1) 

Main Gearbox Housing 70351-38110-044 Main Support Bridge 
Attachment, Chafing 

MR Lateral Stationary 
Star Load  

Main Support Bridge 70400-08162-042 Chafing MR Lateral Stationary 
Star Load  

Left Tie Rod 70400-08115-046 Chafing Left Tie Rod Load 
(MRSCBCSL) 

 
2.2  COMPONENT AND REGIME MAPPING TABLES 

Under the fatigue life management program funded by the Army AED, component and regime 
mapping tables were constructed for the UH-60M. In these tables, all pertinent information 
regarding the damage calculations of the critical components were collected and organized in a 
manner that aided in conducting quantitative sensitivity analyses. Focusing mainly on  
usage-monitoring applications, this information included the following parameters for all  
high-value, life-limited components: component name and part number; critical failure mode; 
substantiating parameter; retirement time; the calculated damage for any damaging regime in the 
CWC spectrum with non-zero damage; and supporting information for those regimes. The 
supporting information for each regime includes binary data on whether or not conservatism was 
removed through the use of cycle counting or pro-rating methodologies as well as flags for the 
GW class of a regime (high, low, or any). The component mapping table contains this 
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information for the collection of all component damage calculations. In the more detailed regime 
mapping table, this information is reduced to only those damage calculations belonging to the 
critical failure mode of the component. This information was essential in identifying key critical 
regimes as initial usage monitoring candidates and in determining the overall sensitivity of 
lifetimes with usage. 

For the subject FAA project, these tables were augmented to include information pertinent to 
loads monitoring and to increase the fidelity of the sensitivity analyses. Both the component and 
regime mapping tables were first updated to the most current version of the UH-60M 
substantiation report at the time (SER-703333 V4). The updating was completed for the ten 
components listed here, which correspond to those selected in paragraph 2.1: 1) main rotor shaft, 
2) main rotor shaft extender, 3) main rotor growth spindle, 4) main rotor cuff,  
5) expandable pin, 6) main rotor hub, 7) main rotor swashplate, 8) main gearbox housing,  
9) main support bridge, and 10) left tie rod. Damage calculations from only the critical failure 
mode were included. This means that for each component, two damage calculations were 
completed; both with and without external stores. 

Additional information, which is required for loads monitoring and sensitivity analysis, were also 
built into the tables, including the following parameters: material S/N curve data, endurance limit 
data, and regime load data. An excerpt from the updated component mapping table is included in 
table 2 for the left tie rod. This table shows the detailed inputs that go into the component  
life-sensitivity analysis, including failure mode type, substantiating parameter, S/N curve 
parameters (beta, gamma), fatigue endurance limit, and damage sources from the basic mission 
spectrum, nap-of-the-earth (NOE) spectrum, and cargo spectrum for the UH-60M. In table 3, an 
excerpt from the regime mapping table is included, which refers to a portion of the damaging 
regimes for the main rotor shaft. This table includes additional information, such as whether 
regime damage is calculated with cycle counting (CC), prorating (PR), (N/Y = No/Yes), and the 
assumed GW range for the maneuver (A = Any GW, L = Low GW, H = High GW). Because it is 
the regime mapping table that allows regimes to be easily sorted in a number of categories and is 
set up for computational analysis, it will be the primary tool for subsequent work. 
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Table 2. Excerpt from component mapping table 

Component 
Part 

Number(s) 
Failure 

Mode(s) 

Substantiating 
Parameter 

(Mnemonic) Beta Gamma 

Fatigue 
Limit 

(Working 
at 

Infinity) 

CRT 
(Hours) 
MNS 

Regimes by Mission Type                                                                        
(with Associated Damage) MNS 

NOE/ 
Cargo 
Inc. Basic Mission NOE Cargo 

Left Tie 
Rod 

70400-
08115-046 

Non-
Chafing 

Left Tie Rod 
Load 

(MRSBCSL) 
0.483 0.5 1967 10000 

E&R Turn 60 R (.0001, 
2240), E&R Turn 60 L 
(.0000, 2100), E&R Turn 
60 R (.0002, 2560), MOD 
P.O. (.0000, 2220), SEV 
P.O. (.0016, 3870),   P 
3.3G-SD (.0000, 4460), 
GAG/FLT (.0078, 7340) 

- 

7 (.0000, 
2220), 30 
(.0000, 
2220) 

No/No 

Chafing 
Left Tie Rod 

Load 
(MRSBCSL) 

0.893 0.5 1496 4600 

Dive (.0053, 1860), E&R 
Turn 45 R (.0001, 1660),  
E&R Turn 60 L (.0000, 
1710), E&R Turn 60 R 
(.0005, 2240), Climb 
(.0015, 1860), Dive (.0016, 
1730), Turn 45 L (.0003, 
1690), Turn 45 R (.0015, 
1950), Turn 60 L (.0001, 
1970), Turn 60 R (.0001, 
1850), E&R Turn 30 R 
(.0001, 1670), E&R Turn 
45 L (.0000, 1700),  E&R 
Turn 45 R (.0005, 1940),  
E&R Turn 60 L (.0002, 
2100), E&R Turn 60 R 
(.0006, 2560), MOD P.O. 
(.0001, 2220), SEV P.O. 
(.0016, 3870),  Extr Man 
(.0000, 1840),  P 3.3G-SD 
(.0000, 4460), GAG/FLT 
(.0054, 7340) 

1 (.0000, 
1640), 

4(.0000, 
1670), 5 
(.0030, 
2000) 

2 (0.0002, 
1860), 4 
(0.0000, 
1670), 7 
(0.0001, 
2220), 19 
(0.0018, 
1860), 21 
(0.0000, 
1670), 25 
(0.0002, 
1860), 26 
(0.0000, 
1670), 30 
(0.0000, 
2220) 

Yes/Yes 
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Table 3. Excerpt from regime mapping table 

Component 
Part 

Number(s) 
Failure 

Mode(s) 

Substantiating 
Parameter 

(Mnemonic) Beta Gamma 

Endurance 
Limit 

(Working at 
Infinity) 

CRT 
(Hours) 
MNS 

Regimes by Mission Type (w/ Associated Damage) MNS 

NOE 
Inc. GW Critical Appendix CC PR 

Endurance 
Limit 

Proximity 

Life 
Sensitivity 
with Load 

Life 
Sensitivity 

with 
Cycles 

Load/Cycle 
Power 
Factor 

Maximum 
Life % 
Change 

Maximum 
Life 

Change 
Basic 

Mission Damage Load NOE Damage Load Cargo Damage Load 
IDGB Main 
Rotor Shaft 70351-

38131-042 
Potential 
non-chafing 

Upper Shaft 
Bending 
(MRSBU1) 

0.032 1 423500 5200 SEV 
P.O. 0.0027 626000 

         
A Y B Y N 0.48 -0.43 -0.14 3.09 0.16 849.33 

IDGB Main 
Rotor Shaft 70351-

38131-042 
Potential 
non-chafing 

Upper Shaft 
Bending 
(MRSBU1) 

0.032 1 423500 5200 REC 
AUTO 0.0001 425000 

         
A Y B N N 0.00 -1.47 -0.01 283.33 0.01 27.18 

IDGB Main 
Rotor Shaft 70351-

38131-042 
Potential 
non-chafing 

Upper Shaft 
Bending 
(MRSBU1) 

0.032 1 423500 5200 DRP 
STOP 0.0014 550000 

         
A Y B N Y 0.30 -0.32 -0.07 4.35 0.08 408.28 

IDGB Main 
Rotor Shaft 70351-

38131-042 
Potential 
non-chafing 

Upper Shaft 
Bending 
(MRSBU1) 

0.032 1 423500 5200 PO 
3.3G-SD 0.0001 626000 

         
A Y B Y N 0.48 -0.02 -0.01 3.09 0.01 27.18 

IDGB Main 
Rotor Shaft 70351-

38131-042 
Potential 
non-chafing 

Upper Shaft 
Bending 
(MRSBU1) 

0.032 1 423500 5200 GAG/FL
T 0.0024 637000 

         
A Y B N Y 0.50 -0.37 -0.12 2.98 0.14 741.50 

IDGB Main 
Rotor Shaft 70351-

38131-042 
Potential 
non-chafing 

Upper Shaft 
Bending 
(MRSBU1) 

0.032 1 423500 
    

7 0.0064 460000 
     

Y A Y B Y N 0.09 0.00 0.00 NA 0.00 0.00 

IDGB Main 
Rotor Shaft 70351-

38131-042 
Potential 
non-chafing 

Upper Shaft 
Bending 
(MRSBU1) 

0.032 1 423500 
    

8 0.0064 460000 
     

Y A Y B Y N 0.09 0.00 0.00 NA 0.00 0.00 

 
CC = cycle counting  
PR = prorating 
A = Any GW  
L = Low GW  
H = High GW 
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2.2.1  Life Sensitivity Metrics 

To investigate which of the more than 250 regimes on the ten critical components should be 
targeted as potential load monitoring candidates, six metrics were defined and calculated:  
1) endurance limit proximity, 2) life sensitivity with load, 3) life sensitivity with cycles,  
4) load cycle/load power factor, 5) maximum life change (%), and 6) maximum life change (hrs). 
These metrics, coupled with analyses of the component life as damage calculation parameters 
change, can aid in quickly prioritizing where additional investigation into potential UBM 
benefits can be obtained. 

2.2.1.1  Endurance Limit Proximity 

The Endurance Limit Proximity is a simple measure of how close a regime load is to the 
endurance limit used in a given damage calculation. It is calculated as the regime load divided by 
the endurance limit minus 1. Values above zero signify a regime that causes some damage to the 
component, with increasing values accruing damage at a faster rate. Just because this parameter 
is high does not mean that the regime is highly damaging, because damage is also a function of 
usage. For instance, a very high load for one cycle will not be a key regime. Values less than or 
equal to zero signify a regime that is below the endurance limit and, therefore, does not cause 
any damage. 

This parameter has limited use for metallic components, which have S/N curve shapes with 
significant curvature. For these parameters, the damage accrual rate near the endurance limit is 
generally very small. However, composite curve shapes are almost always flat and horizontal. 
Damaging loads on these curve shapes, which are close to the fatigue limit, can accrue damage at 
a very high rate. This is where the endurance limit proximity is useful—to quickly scan regimes 
in a composite damage calculation to find those for which the load can be reduced slightly (using 
VML or other load-monitoring techniques) while still making a large lifetime improvement. 

2.2.1.2  Lifetime Sensitivity Factors 

The second two metrics define the sensitivity of the calculated lifetime to both the regime load 
and the number of cycles at that load. Defined as point elasticities, these parameters can be 
interpreted as follows: Given a 1% change in load (cycles), the lifetime would change by this 
percent. Using these parameters, all regimes can be quickly scanned to determine which might 
provide benefit faster than others. The life sensitivity with load and cycles for the main rotor hub 
is shown in figure 1. An additional parameter, termed the load/cycle power factor, measures the 
relative power of load to cycle reduction and is simply the ratio of the two point elasticities. This 
final factor is mainly for diagnostic use because it can be difficult to interpret in a manner that is 
meaningful to the damage calculations. 
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Figure 1. Life sensitivities with load and cycles for MR hub 

The calculation of both sensitivity factors flows from a generalized derivation of component 
retirement time. This derivation begins with the standard SAC form that represents all S/N 
curves: 

 𝑁𝑁 = � β

�𝑠𝑠𝑒𝑒�−1
�
1 γ⁄

 (1) 

 
In this formulation, S is the load, e is the endurance limit, N is the number of cycles to fracture in 
millions, and β and γ are material constants provided for each structural material. This curve 
shape is used for the vast majority of materials considered in aircraft substantiations, including 
titanium, steel, aluminum, fiberglass, graphite, and most adhesives. One notable exception is the 
reflexive curve shape used for annealed, low kt shot-peened Ti-6Al-4V.  

The second step in the derivation is to invoke Miner’s rule of damage summation. This rule 
allows the damage from each regime to be calculated, based on a single S/N curve, separately, 
then linearly summed together to obtain a total damage. The part is assumed to fracture when 
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this damage summation is equal to 1. An important note is that all SAC damage calculations use 
a baseline of 100 hours. This means that the number of cycles or occurrences provided in the 
CWC table of a damage calculation is really the number of cycles/occurrences per 100 flight 
hours. With this modification, the calculated lifetime of a part can be calculated as: 

 𝐿𝐿 = 100
∑ 𝐷𝐷𝑖𝑖𝑖𝑖

 (2) 

where L is the CRT and Di is damage for regime i. The damage for a single regime can be 
calculated from the generalized S/N curve shape as follows: 

 𝐷𝐷𝑖𝑖 = 𝑡𝑡𝑖𝑖∙ω 106⁄

� β

�
𝑠𝑠𝑖𝑖
𝑒𝑒 �−1

�
1 𝛾𝛾⁄ = 𝑂𝑂𝑖𝑖∙𝐿𝐿𝑖𝑖∙ω 106⁄

� β

�
𝑠𝑠𝑖𝑖
𝑒𝑒 �−1

�
1 γ⁄  (3) 

In the first of these two formulations, ti is the number of seconds spent within a regime per 100 
flight hours, si is the regime load, and ω is the loading frequency (1/rev main and 4/rev tail). 
Note that the total number of cycles is divided by one million, as the S/N curve constants are 
derived with this scaling. The second formulation, which is used for transient maneuvers, 
calculates the number of seconds per 100 flight hours by multiplying the occurrences per 100 
flight hours (Oi) by the length of each occurrence (Li). 

An intermediate step in the sensitivity calculation is to evaluate the derivative of the single 
regime damage with respect to both time per 100 hours (ti) and regime load (si). These are: 

 ∂𝐷𝐷𝑖𝑖
∂𝑡𝑡𝑖𝑖

= ω 106⁄

� β

�
𝑠𝑠𝑖𝑖
𝑒𝑒 �−1

�
1 γ⁄  (4) 

 ∂𝐷𝐷𝑖𝑖
∂𝑠𝑠𝑖𝑖

= �𝑡𝑡𝑖𝑖∙ω 106⁄ �∙�(𝑠𝑠𝑖𝑖 𝑒𝑒⁄ )−1�
1 γ� −1

γ𝑒𝑒β1 γ⁄  (5) 

Two final parameters, the maximum life change % and the absolute maximum life change (hrs), 
provide the potential life change if all damages associated with a given regime are taken away. 
When observing the point sensitivities, it is essential to monitor the maximum benefit for a given 
regime as well because some high-sensitivity regimes might be sensitive over small changes but 
may not provide benefit over a large range. 

The two most important metrics for ranking of potential components and target regimes are the 
elasticity of fatigue life with load and cycles. These parameters essentially represent the 
percentage change in life, with a 1% change in either the regime load or the number of cycles at 
a given load. Though these parameters immediately point out those damage calculation line 
items to which the life is most sensitive, they are limited in the fact that they are point 
estimations only. This means that as load/cycles move up or down, the point elasticity and this 
sensitivity also change. 

To ensure that the perceived benefits themselves are not sensitive to reasonably large changes of 
either load or cycles, formulations of the fatigue life as a function of the two parameters were 
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created. The elasticity parameters were also termed in a way that allowed them to be plotted 
versus the input parameters as well. A MATLAB® program was created, which allows for these 
curves to be calculated and plotted quickly, and given simple inputs, such as the S/N curve 
parameters and initial damage calculation figures. Representative output taken from a single 
regime from the main rotor hub damage calculation is shown in figures 2 and 3. 

 

Figure 2. The MR hub life as a function of low GW climb load and cycle count 
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Figure 3. The MR hub life elasticities as functions of low GW climb load and cycle count 

As shown in the figures, life elasticities exhibit nonlinear behavior with both load and cycles. For 
example, after a load reduction of approximately 10%, most of the benefit of load reduction has 
been used. For this reason, it is essential to be aware of this behavior when selecting potential 
targets for UBM applications. 

From this analysis, two key loads were selected for instrumentation in the CERDEC flight test 
that cover several life-limited dynamic components: the main rotor lateral stationary swashplate 
(MRLSS) axial load, which can be used to substantiate the gearbox housing, and the main rotor 
shaft extender bending load (MRSEBL), which can be used to substantiate the main rotor shaft, 
shaft extender, and hub. Important regimes for these substantiating parameters based on the 
component life sensitivity study were turns, climb, and pullouts. These regimes and loads were 
the focus of the CERDEC flight test evaluation. 

3.  CERDEC UH-60M FLIGHT TEST SUPPORT 

3.1  FLIGHT TEST OVERVIEW 

An FAA-funded IVHMS flight test program was conducted by the Army CERDEC on a  
UH-60M from March–July 2013. The FAA/CERDEC IVHMS flight test program objective was 
to provide validation data for several load and usage monitoring methods. SAC provided a 
support role to assist in defining the flight test plan, instrumentation requirements, and data 
processing requirements. The primary objectives of this program were to provide validation data 
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for RR, GW/CG, and VML algorithms, and to generate design of experiment (DOE) data for the 
ARL to support a pilot sensitivity study.  

Climb and banked turn maneuvers were flown to support the development of RR clustering 
algorithms. These maneuvers differed from typical FLS maneuvers in that they included unique 
techniques to explore the boundaries of the RR definitions. The GW/CG estimation algorithms 
required level flight and out of ground effect (OGE)/in ground effect (IGE) hover maneuvers at 
several vehicle configurations. The VML algorithm validation for key substantiating parameters 
required a focus on the turn, climb, and dive regimes, which were identified as key fatigue life 
drivers. 
 
3.2  INSTRUMENTATION 

The CERDEC flight test aircraft used an ACRA data-acquisition system with data-acquisition 
units installed in both the fixed and rotating systems. This system was selected based on input 
from SAC. The rotating acquisition system precluded the need for a slip ring and was  
time-synchronized to the fixed system through the GPS time. In addition to the ACRA data 
stream, data were acquired independently by the production IVHMS, which included RR 
sequence data. The IVHMS and ACRA data were time synchronized in post-processing using the 
yaw rate signal to enable joint analysis of RR performance with corresponding flight loads. The 
two key dynamic loads measured during this flight test program were the axial load on the 
MRLSS and the MRSEBL. These components are shown in their calibration fixtures in figures 4 
and 5, respectively. Both of these components have extensive load measurement history from the 
UH-60M FLS test program, which enabled a meaningful comparative analysis of  
CERDEC-measured dynamic loads during scripted maneuvers. Both components were 
instrumented and calibrated by SAC Instrumentation Engineering in Stratford, Connecticut. A 
complete list of parameters recorded by the ACRA data system is shown in table 4. 
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Figure 4. Main rotor lateral servo link 

 

Figure 5. Main rotor shaft extender 
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Table 4. The CERDEC flight test instrumentation list 

Cabin Acquisition 
 

Rotating Acquisition 
Mnemonic Sample Rate 

 
Mnemonic Sample Rate 

EGI1_Belly_Vel_Zb_calc 10 Hz 
 

aaGPS_DOY 10 Hz 
EGI1_Calibrated_Airspeed_calc 10 Hz 

 
abGPS_Hours 10 Hz 

EGI1_Lateral_Acceleration_calc 10 Hz 
 

acGPS_Minutes 10 Hz 
EGI1_Longitudinal_Acceleration_calc 10 Hz 

 
adGPS_Seconds 10 Hz 

EGI1_Nose_Vel_Xb_calc 10 Hz 
 

aeGPS_Centiseconds 10 Hz 
EGI1_Pitch_Rate_calc 10 Hz 

 
afGPS_Microseconds 10 Hz 

EGI1_Pitch_Attitude_calc 10 Hz 
 

Centiseconds 10 Hz 
EGI1_Pressure_Altitude_calc 10 Hz 

 
Day_of_Year 10 Hz 

EGI1_Roll_Attitude_calc 10 Hz 
 

GPS_Altitude 10 Hz 
EGI1_Roll_Rate_calc 10 Hz 

 
GPS_Ground_Speed 10 Hz 

EGI1_RW_Vel_Yb_calc 10 Hz 
 

GPS_Heading 10 Hz 
EGI1_Vertical_Acceleration_calc 10 Hz 

 
GPS_Speed_KPH 10 Hz 

EGI1_Wind_Direction_calc 10 Hz 
 

GPS_Status 10 Hz 
EGI1_Wind_Velocity_calc 10 Hz 

 
Hours 10 Hz 

EGI1_Yaw_Rate_calc 10 Hz 
 

Minutes 10 Hz 
EGI2_Belly_Vel_Zb_calc 10 Hz 

 
Satellites_in_Use 10 Hz 

EGI2_Calibrated_Airspeed_calc 10 Hz 
 

Satellites_in_View 10 Hz 
EGI2_Lateral_Acceleration_calc 10 Hz 

 
Seconds 10 Hz 

EGI2_Longitudinal_Acceleration_calc 10 Hz 
 

Too_Few_Satellites 10 Hz 
EGI2_Nose_Vel_Xb_calc 10 Hz 

 
MRSEBL (Shaft Bending, in-lb) 160 Hz 

EGI2_Pitch_Rate_calc 10 Hz 
   EGI2_Pitch_Attitude_calc 10 Hz 
   EGI2_Pressure_Altitude_calc 10 Hz 
   EGI2_Roll_Attitude_calc 10 Hz 
   EGI2_Roll_Rate_calc 10 Hz 
   EGI2_RW_Vel_Yb_calc 10 Hz 
   EGI2_Vertical_Acceleration_calc 10 Hz 
   EGI2_Wind_Direction_calc 10 Hz 
   EGI2_Wind_Velocity_calc 10 Hz 
   EGI2_Yaw_Rate_calc 10 Hz 
   GPS_Altitude 10 Hz 
   GPS_Ground_Speed 10 Hz 
   GPS_Heading 10 Hz 
   GPS_Lock 10 Hz 
   GPS_Speed_KPH 10 Hz 
   GPS_Speed_KTS 10 Hz 
   iHUD_Altitude_Rate_calc 10 Hz 
   iHUD_Baro_Altitude_calc 10 Hz 
   iHUD_Engine_1_Torq_calc 10 Hz 
   iHUD_Engine_2_Torq_calc 10 Hz 
   iHUD_Radar_Altitude_calc 10 Hz 
   iHUD_Indicated_Airspeed_calc 10 Hz 
   Satellites_in_Use 10 Hz 
   Satellites_in_View 10 Hz 
   MRLSS (Lat Servo Link Load, lb) 160 Hz 
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3.3  FLIGHT TEST APPROACH 

3.3.1  RR/Clustering 

Two particular flight regimes, climb and 45-degree turns (left and right), were identified as key 
drivers of component retirement times. It was also determined that the effects of these maneuvers 
on component fatigue lives were particularly sensitive to the total number of cycles accounted 
for in the damage calculation. This makes these regimes prime candidates for IVHMS/HUMS 
usage-monitoring applications. The dive regime is also significant to certain components and 
was included because it can be used to balance out the climb maneuvers during the flight test.  

To better design the regime cluster definitions, it is necessary to exercise the RR algorithms, 
specifically when they are weakest or have the greatest ambiguity relative to combining regime 
sequences into a contiguous maneuver. For this reason, both regime excursions and compound 
maneuvers (which are based on one of the selected key target regimes having the most impact on 
UBM benefit) were flown. Regime excursions happen when one or more state parameters of a 
regime are temporarily altered. 

Regime excursions begin with a steady state regime, such as climb or coordinated turn, being 
flown by hand. It was important that the pilot was not assisted by the partial authority flight 
controls because they would eliminate much of the variation that is desired in this data set. Once 
the steady state was obtained, the pilot deliberately inputted manual control impulses, which 
forced the aircraft to deviate from the steady maneuver. These control inputs were intended to 
last a very short time (impulse) to several seconds and were generated by either the cyclic or 
collective sticks. The pilot then brought the aircraft back to the previously held steady state. 
These naturally flown dynamic excursions from the steady state maneuver were desired. The 
excursions were repeated with increasing severity until the data requirements were met. An 
example of a regime excursion is a climb flown with temporary changes to the climb rate 
(excursions) to attempt to induce the RR algorithms to falsely recognize a pullout or pushover. In 
this maneuver, a predetermined climb rate is achieved (at a predetermined forward speed). The 
pilot then made natural collective or cyclic inputs which altered the climb rate (the speed 
changed as well). Maintaining the predetermined climb rate and airspeed for the whole procedure 
was not as critical as the natural oscillations around some steady state maneuvers. 

Compound maneuvers occur in a situation in which there is no clear entry or exit from one 
regime to the next. For instance, if an aircraft is in a level turn and begins to climb steadily, the 
CWC spectrum would at first recognize a turn, then a climb (climbing turns are part of the climb 
regime).  

These maneuvers were flown at three GW and CG combinations. As with all test segments, all 
maneuvers and aircraft states remained within the normal operating envelope of the aircraft. 

This testing not only simulated what conditions cause error in the RR output, but also allowed 
for a proper definition of entry and exit of the key regimes. Strategically important load 
measurements, described in section 4.3.3, were recorded alongside the RR output. This allowed a 
clear linking of entry and exit with load thresholds that are directly linked to the pertinent 
component damage calculations (e.g., endurance limits). 
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3.3.2  Loads Monitoring 

As with usage-monitoring applications, a study was performed to identify regimes that had high 
lifetime sensitivity to load. The key regimes were climb, 45-degree turns (left and right), and the 
NOE mission. The possible benefits from these regimes stem from the cycle counting that loads 
monitoring enables and the reduction of the severity of the assumed CWC load spectrum. 
Because of the specialized nature of the NOE mission, these regimes were not part of this flight 
test program. 

To obtain monitoring loads benefits in a component damage calculation, it is important to treat 
all sub-maneuvers, which are grouped into each regime. For instance, the climb regime actually 
consists of loads from best rate of climb, takeoff power climb, intermediate power climb, and 
climbing left and right turns. Likewise, 45-degree turns include turns at varying airspeed ranges 
and descending turns. During this flight test program, it was desired to collect data for as many 
of these sub-regimes as practical. Both the climb and turn maneuvers were flown at three GW 
and CG combinations. All maneuvers and aircraft states remained within the normal operating 
envelope of the aircraft. 

The actual load measurements collected, as described in section 4.3.3, were compared to the 
VML output in a variety of manners to both train and validate the models. Applications included 
cycle counting, vibratory load assignment, and maximum/minimum load tracking. 

3.3.3  GW/CG Estimation 

To provide clean training and validation data for GW and CG estimation algorithms, the aircraft 
was held in steady state hover and level flight conditions at three GW and CG combinations. 
Steady hover and hover turns were performed at varying radar altitudes, in both IGE and OGE. 
Rotor rpm (NR) was also varied across hover data points. A full level flight sweep was 
conducted for each aircraft configuration.  

3.3.4  Pilot Variability 

A UBM process must maintain the level of reliability that is obtained with the current damage 
calculation process. A key input to this process is a distribution of the error involved in either 
usage or loads measurements. It would be simple to complete a flight test program with a single 
pilot, providing clean data on algorithm accuracy. However, this would ignore the possibility that 
human factors can result in variations in piloting techniques, which may lead to variability in 
how a pilot enters or exits any particular maneuver and peak loads for nominally the same 
regime, potentially resulting in additional uncertainties in the algorithm results. 

To fully characterize this error, the variation due to human factors in each of the RR/VML inputs 
needs to be understood. This would necessitate a large data set that was beyond the scope of 
CERDEC’s flight test budget. Instead, a DOE developed by the ARL characterized what this 
data set would look like, specifically for the climb regime, to examine whether such pilot 
variability was important. These results are described in an ARL report [1]. It is important to 
understand that the intent of such a study was not to characterize the variability of loads and 
usage due to pilot effects, but rather to characterize the sensitivity of error statistics related to 
usage and loads monitoring.  
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3.4  Flight Test Conditions 

The program flight log is shown in table 5. Two basic configurations were tested, which 
consisted of a clean, low GW configuration and an external stores support system (ESSS) high 
GW configuration. The GW and CG of these test points relative to the UH-60 envelope and FLS 
conditions are shown in figure 6. 

Table 5. The CERDEC/FAA IVHMS test program flight log 

Flight # Date 
Flight Time 

(hrs) 
Takeoff 
GW (lb) 

Takeoff 
CG Configuration Fuel Load 

1 3/11/2013 1.50 16,000 363 Clean Main 
2 3/13/2013 1.00 16,080 363 Clean Main 
3 3/29/2013 1.10 21,400 353.5 ESSS Main+External 
4 4/16/2013 2.00 21,800 353.5 ESSS Main+External 
5 6/11/2013 1.80 21,900 353.5 ESSS Main+External 
6 7/24/2013 1.40 16,170 363 Clean Main 

 

 

Figure 6. The CERDEC/FAA GW-CG test point diagram 

3.5  FLIGHT TEST RESULTS 

Results from the CERDEC flight test are analyzed in sections 4 and 5. Section 4 focuses on 
applying RR clustering methods using the CERDEC flight test data. Section 5 focuses on 
applying VML and GW prediction methods. The VML models are compared to the measured 
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shaft bending and servo loads, and the GW model is compared to the known GW configurations 
from the CERDEC aircraft. 

4.  RR ANALYSIS 

4.1  OVERVIEW OF RR 

HUMS RR algorithms are used to identify and categorize how the aircraft has been flown. These 
algorithms are a key element to short-term structural usage monitoring approaches being pursued 
by various original equipment manufacturers (OEMs) and Department of Defense Services to 
obtain approved UBM credits. Most RR inputs are also essential for flight control and pilot 
decision-making and originate from avionics units that have the highest levels of reliability for 
hardware and associated software. The RR data flow is shown in figure 7, which shows standard 
input and output data types. The RR input data can be grouped into the following six categories: 

1. Basic aircraft and system data, which include directly measured parameters and 
parameters that typically depend on some level of pilot input 

2. Derived air data parameters 
3. Aircraft attitude parameters 
4. Stick position 
5. Aircraft discrete parameters 
6. Aircraft rigid-body accelerations 

Though the details of RR algorithms vary, the above types of required input data are typical for 
most OEM rotorcraft platforms. The RR output includes all raw parametric data, derived 
parameters, regime records, and event records. For RR algorithms that identify broader 
maneuver categories rather than detailed regimes, fewer input parameters may be required. 

Most mature RR algorithms are based on hierarchal Boolean logic that compares input 
parameters against a set of predefined ranges to determine the general aircraft flight 
condition/maneuver, such as steady level, turn, climb, or pullout. For the UH-60M, these rules 
are documented in reference 2. An example of a regime definition for Intermediate Power Climb 
is shown in table 6. Further detailed regime definition is possible with knowledge of aircraft 
configuration, such as GW, CG, external load, and external stores. This enables prorating of 
component loads within finer regime categories rather than allocating the most severe peak load 
for all instances of a general maneuver. This prorating is frequently used in fatigue substantiation 
for military rotorcraft and less so for commercial rotorcraft, which typically use only maneuver 
severity to form prorated regimes. 
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Figure 7. The RR algorithm data process 
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Table 6. Example regime definition for intermediate power climb 

Regime: Intermediate Power Climb 
Category Steady State 

Parameter Operator Threshold Hysteresis 
WOW Delayed  = False None 
Landing Flag  = False None 
Takeoff Flag  = False None 
Roll Attitude  >= -10 None 
Roll Attitude  <= 10 None 
Altitude Rate  > 600 200 
Lateral Acceleration, 
Filtered  

>= -0.08 None 

Lateral Acceleration, 
Filtered  

<= 0.08 None 

Yaw Rate  >= -5 None 
Yaw Rate  <= 5 None 
Corrected NZ  <= 1.2 None 
Corrected NZ  >= 0.8 None 
Derived TGT  >= 775 None 
Derived TGT  < 850 None 
VH Fraction  <= 1.05 None 
Calibrated Airspeed  > 43 5 
Turn Entry Recovery ID  = 0 None 

  
 TGT = turbine gas temperature, WOW = weight on wheels 
 
4.2  RR CLUSTERING 

A fundamental requirement that must be satisfied before component retirement times can be 
influenced by RR data is to demonstrate, with direct evidence from flight tests, that the 
algorithms correctly classify the flight regimes being pursued in a particular credit application. 
This requirement is the validation of RR algorithms. Several previous efforts have focused on 
RR validation, most notably a previous FAA-funded SAC effort documented in reference 3. 
Through these efforts, it was discovered that onboard RR classifications for many critical 
maneuvers do not correlate directly to independent pilot-declared maneuvers, which traditionally 
serve as the truth classification that RR performance is measured against. Two common issues 
that lead to these errors are: 1) regime thresholds are not adequately designed to align with flight 
test data and 2) truth regimes and predicted regimes are defined with different levels of 
abstraction. For example, table 7 shows a real example from flight test of the RR-predicted 
sequence during a 60-degree right turn. During this flight test maneuver, RR detected four 
unique types of turn regimes and two rolling pullouts. Both of the above-mentioned issues with 
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RR can be observed in this example. The detection of pullouts during the turn is due to 
inadequate definitions of thresholds, and the multitude of predicted turn regimes are because the 
predicted regimes are defined more narrowly than the flight test truth regime. 

Table 7. Example of RR prediction during 60-degree right turn 

Pilot-Declared Truth Regime RR Prediction 

60-Degree Right Turn 

Right Climbing Turn 
Right Climbing Turn Exceeding 45-Degree 
AOB 
60-Degree AOB Level Right Turn 
60-Degree AOB Descending Right Turn 
Right Rolling Pullout 
60-Degree AOB Descending Right Turn 
Right Rolling Pullout 

  
 AOB = Angle of bank 
 
Though these issues are often perceived as errors in the output of RR, the output during these 
maneuvers is not random. RR properly classifies the regimes based on the definitions that were 
provided to the software and the dynamic nature of certain key state parameters, such as roll 
attitude, rate of climb, and load factor during transient maneuvers. Though it is possible to define 
these regimes to be more consistent with flight test definitions, a simpler post-processing 
approach called clustering was developed to take advantage of hundreds of thousands of hours of 
existing RR data. Clustering works by identifying the patterns in RR output that occur during 
targeted regimes and defining the logic for broadening or clustering the RR output into larger 
groups that correctly capture both the occurrence and duration of the intended regime. The 
objective of clustering is to find occurrences and duration of a particular CWC regime within 
existing RR output data.  

Cluster definitions consist of a set of target regimes and a set of cluster regimes. Because the 
IVHMS RR definitions were designed with a higher degree of specificity than the UH-60M 
CWC, several different RR target regimes can be associated with a single CWC regime. 
However, examination of actual RR output shows that many other nonassociated cluster regimes 
are in close proximity to or cluster within and around the CWC regime. In processing a cluster 
definition, any contiguous set of cluster and target regimes that contain at least one target regime 
will satisfy the definition. Cluster regimes can be defined with persistence parameters so that 
only very short duration cluster regimes are included.  

The process of designing a regime cluster involves a combination determining the desired target 
regime set that aligns with the CWC regime, and observation of RR test data to determine the 
cluster regime set that occurs within the CWC regime. In addition, a truth regime definition must 
be established to provide independent comparison data. A truth regime classification is 
traditionally established by a flight test pilot or engineer and documented in a run log, which 
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contains maneuver descriptions and maneuver codes. Maneuver codes are then mapped to a 
usage spectrum regime list. 

4.3  APPLICATION OF RR CLUSTERING TO CERDEC FLIGHT TEST 

4.3.1  Cluster Design Process for Climb Regime 

4.3.1.1  CWC Mapping 

Mapping of both standard flight test maneuvers and corresponding IVHMS Regimes to the  
UH-60M CWC climb regime is shown in table 8. 

Table 8. The CWC climb regime mapping 

Flight Test Maneuver 
UH-60M Regime 

Definition IVHMS Regime 
Climb Steady Best Rate of Climb 

CLIMB 

31: Best Rate of Climb 
Climb Steady Intermediate 
Power 32: Intermediate Power Climb 

Climb Steady Takeoff Power 33: Takeoff Power Climb 
Climbing Left Turn (Inc E/R, 
180 Deg) 36: Left Climbing Turn 

Climbing Right Turn (Inc E/R, 
180 Deg) 37: Right Climbing Turn 

 
4.3.1.2  Definition of Truth Regime 

A parametric definition of the truth regime is required to generate error statistics for a given 
IVHMS regime or regime cluster set using the CERDEC test data. In the context of the UH-60M 
structural fatigue usage spectrum, the climb regime is composed of various climb power levels 
and climb maneuvers that can be referred to as sub-regimes, which are listed in table 8. Of 
interest in a UBM credit application is the total duration spent in the broader CWC regime, not 
necessarily the duration spent within each sub-regime. Sub-regime durations would be of 
particular interest in developing a more refined usage spectrum or in defining a climb prorate, for 
example, to reduce the overall contribution of takeoff power climb within the CWC climb 
regime. Though the goal of RR is to be able to detect all sub-regimes with sufficient accuracy, 
that is not the objective of clustering. The clustering algorithm was intended to enable 
monitoring of broad regime classifications that map directly to the CWC. 

Defining a unique truth regime for each of the six components of the climb regime is not 
necessary if a single set of truth criteria can be defined that encompasses all the components of 
the CWC climb regime. Truth criteria for the CWC climb regime were developed based on a 
review of existing onboard RR software and input from subject matter experts. Examination of 
the three steady state climb sub-regimes reveals that grouping these into a common truth regime 
would simplify the criteria by broadening the definition so that it would rely only on the 
airspeed, climb rate, and roll attitude. Grouping the transient turns during climb would open up 
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the roll attitude limits to include turns up to 45 degrees. The resulting parametric truth regime 
definition for the CWC climb regime is shown in table 9. This CWC truth regime captures the 
most important threshold in defining a climb regime: the altitude rate.  

Table 9. The CWC climb truth regime definition 

Parameter Expression (Hysteresis) 
Roll Attitude (deg) ≥ -45 
Roll Attitude (deg) ≤ 45 
Altitude Rate (fpm) > 600 (200) 
Calibrated Airspeed (kts) > 43 (5) 

 
fpm = feet per minue; kts = knots 

 
4.3.1.3  Definition of Climb Target Regimes 

Target regimes for the cluster definition are the IVHMS regimes that map directly to climb in the 
UH-60M usage spectrum. These regimes are shown in table 10. 

Table 10. The CWC climb target regime set 

Target Regime Minimum Duration 
31: Best Rate of Climb 0 
32: Intermediate Power Climb 0 
33: Takeoff Power Climb 0 
36: Left Climbing Turn 0 
37: Right Climbing Turn 0 

 
4.3.1.4  Baseline Climb RR Performance 

With the CWC climb regime defined parametrically and an RR target set defined, the baseline 
performance of RR can be assessed. At this point, the clustering algorithm is not being exercised 
beyond the simple task of grouping the target regimes. Summary results on the CERDEC test 
data are shown in table 11. The total count of climb regime occurrences is 1.8 times the 
occurrences of the truth regime, and the total duration is 87% of the truth regime duration. This 
tendency to over-count occurrences and undercount duration is a known characteristic of raw RR 
output data. One reason for this can be seen in figure 8, in which a single continuous climb 
regime is flown while the roll attitude is oscillated around the 10-degree threshold for turn 
classifications. In this plot, the regime sequence is shown at the top with the target regimes 
highlighted in red blocks. The true regime duration, according to the parametric definition, is 
shown by the dark red portion of the curves that represent the parametric data. By performing 
these unique maneuvers, the RR output classifies many short-duration turn-entry and  
turn-recovery regimes, which do not get counted as part of the climb. The mapping of these short 
transient regimes to the CWC is dependent on the context in which they occur. For the example 
shown, grouping them with the climb regime is desired because they occur adjacent to a 
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climbing turn and are, therefore, integral to the climbing turn. This is precisely what the 
clustering algorithm was designed to do.  
 

Table 11. Baseline RR performance for climb from CERDEC testing 

Statistic Target Regimes Truth Regime 
Mean Duration(s) 17.2 37.3 
Median Duration(s) 7.5 8.3 
Duration Standard(s) 27.9 68.0 
Minimum Duration(s) 1.0 0.05 
Maximum Duration(s) 299 343 
Total Duration(s) 6456 7458 
Counts 376 200 
Percentage 14.38 15.94 

 

 

Figure 8. Example of climb RR before clustering 

4.3.1.5  Selection of Climb Cluster Regimes 

Defining a cluster set starts with analyzing the neighboring regimes from the existing target set 
defined in table 10. All neighboring regimes from the target set and associated frequency of 
occurrence within the CERDEC test data are shown in table 12. Examination of table 12 shows 
that moderate pullouts/pushovers and turn entry and recovery were frequently occurring 
immediately before or after a climb regime. This is as expected because the flight cards 
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contained stick excursion maneuvers in both the pitch axis and roll axis to induce these types of 
regimes during climbs. In a similar analysis of fleet data, these regimes occurred among the  
top-ten neighboring regimes adjacent to a climb regime. 

Selection of the cluster regimes and their associated persistence (the maximum cluster regime 
duration that will satisfy the definition) required a combination of observation and engineering 
judgment. Two general criteria were applied in the selection of cluster regimes. First, regimes 
that should be grouped with a target set (regardless of duration), but that do not belong in any 
target set themselves, were selected. Turn entry and recovery regimes fall into this category. 
These regimes were assigned an arbitrarily high persistence threshold, such that any realistic 
duration would satisfy the threshold. Second, steady state regimes that occur very frequently and 
in very short duration were also selected. This is a means of imposing persistence logic into the 
RR classification process, which is not currently done onboard. The second criterion does not 
generally apply to transient regimes because they are, by nature, very short duration regimes. 

Additional consideration was given to clustering moderate pullouts and pushovers with the climb 
regime using the minimum persistence threshold of 1 second. There are two reasons for 
including these short, transient regimes in the cluster definition. First, the truth definition was 
broadened by not including corrected load factor. This means that pullouts and pushovers 
occurring during a climb will not draw time away from the climb duration. Second, it was 
desired to mitigate the fact that pullouts are over-counted in RR output because of excessive 
noise in the onboard measured vertical acceleration parameter that is used to classify pullouts. 
By including these regimes in the cluster definition for climb, the resulting climb statistics are 
protected from false positives of nuisance regimes that can otherwise significantly reduce the 
total time within the CWC climb regime. The resulting set of cluster regimes is shown in  
table 13. 
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Table 12. The IVHMS regimes bordering climb target regimes 

Regime Before (%) After (%) Total (%) 
82: Pushover to 1.2 VH, 0.3 to 0.8 G 12.418 15.033 13.725 
73: Symmetrical Pullout to 1.2 VH 12.418 13.072 12.745 
91: Right Turn Entry 8.170 13.072 10.621 
93: Right Turn Recovery 11.765 9.150 10.458 
94: Left Turn Recovery 7.843 9.804 8.824 
92: Left Turn Entry 7.516 8.824 8.170 
21: Level Flight Between 0.5 VH 8.497 7.516 8.007 
22: Level Flight Between 0.6 VH 6.536 4.575 5.556 
23: Level Flight Between 0.7 VH 4.902 4.575 4.739 
24: Level Flight Between 0.8 VH 3.595 2.941 3.268 
20: Level Flight Between 0.4 VH 2.288 3.268 2.778 
55: 30 AOB Level Left Turn, 10 to 35 AOB 3.268 2.288 2.778 
59: 30 AOB Level Right Turn, 10 to 35 AOB 2.288 0.980 1.634 
56: 45 AOB Level Left Turn, 35 to 50 AOB 1.961 0.980 1.471 
76: Left Rolling Pullout to 1.2 VH, Up to 1.8 G 1.634 0.327 0.980 
79: Right Rolling Pullout to 1.2 VH, Up to 1.8 G 0.980 0.980 0.980 
19: Level Flight Between 0.3 and 0.4 VH 0.980 0.327 0.654 
25: Level Flight Between 0.9 and 1.0 VH 0.654 0.654 0.654 
95: Unrecognized 0.654 0.327 0.490 
60: 45 AOB Level Right Turn, 35to 50 AOB 0.654 0.000 0.327 
86: Other Maneuver 1, Left Climbing Turn 
Exceeding AOB Limits 0.000 0.654 0.327 

87: Other Maneuver 2, Right Climbing Turn 
Exceeding AOB Limits 0.000 0.327 0.163 

8: OGE Hover 0.000 0.327 0.163 
96: Undetermined 0.327 0.000 0.163 
9: Forward Flight to 0.3 VH  0.327 0.000 0.163 
 
AOB = Angle of bank 
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Table 13. The CWC climb cluster regime set 

Cluster Regime Persistence(s) 
8: OGE Hover 1 
9: Forward Flight to 0.3 VH 1 
19: Level Flight Between 0.3 VH 1 
20: Level Flight Between 0.4 VH 1 
21: Level Flight Between 0.5 VH 1 
22: Level Flight Between 0.6 VH 1 
23: Level Flight Between 0.7 VH 1 
24: Level Flight Between 0.8 VH 1 
25: Level Flight Between 0.9 VH 1 
73: Symmetrical Pullout to 1.2 V 1 
82: Pushover to 1.2 VH , 0.3 to 1 
91: Right Turn Entry 999 
92: Left Turn Entry 999 
93: Right Turn Recovery 999 
94: Left Turn Recovery 999 

 
4.3.1.6  Clustered Climb Regime Results 

Table 14 shows the results after applying the cluster definition to the CERDEC flight test data. 
Relative to the baseline results, the total count of occurrences improved from 1.8 to 1.03 times 
the occurrence count of the truth regime, and the duration accuracy improved from 87% to 94%. 
Figure 9 shows the same example climb maneuver as figure 8, except the clustering definition 
has now been applied. 

Table 14. Clustering RR performance for climb from CERDEC testing 

Statistic Target Regimes Truth Regime 
Mean Duration(s) 34.1 37.3 
Median Duration(s) 12 8.3 
Duration Standard(s) 56.3 68.0 
Minimum Duration(s) 1.0 0.05 
Maximum Duration(s) 356 343 
Total Duration(s) 7024 7458 
Counts 206 200 
Percentage 15.64 15.94 
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Figure 9. Example of climb RR with clustering 

4.3.2  Cluster Design Process for 45-Degree Turn Regime 

4.3.2.1  CWC Mapping 

The mapping of both standard flight test turn maneuvers and corresponding IVHMS regimes to 
the UH-60M CWC generic turn regime is shown in table 15 for a 45-degree right turn. 
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Table 15. The CWC turn regime mapping 

Flight Test Maneuver 
UH-60M Regime 

Definition IVHMS Regime 
Steady Right Turn to 0.5 
VH (45 DEG) 

TURN 45 R 

60:45 AOB Level 
Right Turn, 35° to 50° 
AOB 

Steady Right Turn to 0.8 
VH (45 DEG) 
Steady Right Turn to 1.0 
VH (45 DEG) 
Right Turn to 0.8 VH 
(45 DEG) (Inc E/R) 

68:45 AOB 
Descending Right 
Turn, 35° to 50° AOB 

Right Turn to 1.0 VH 
(45 DEG) (Inc E/R) 
Descending Right Turn 
(45 DEG) (Inc E/R) 

 
 AOB = Angle of bank 
 
4.3.2.2  Definition of Truth Regime 

A parametric truth regime definition was developed to represent the CWC turn 45 R regime, 
which is composed of both level and descending 45-degree right turns. Other types of turns that 
do not fall into this CWC regime are climbing turns and autorotation turns. As shown in section 
4.3.1.1, climbing turns are considered to be part of the CWC climb regime and are not an explicit 
turn regime. Autorotation turns are represented explicitly in the CWC for left and right, but not 
by angle of bank (AOB). The approach for developing a truth parametric definition for generic 
45-degree right turns (generic being the set of level and descending turns) is as follows: 1) 
identify all turns by a roll-angle threshold, 2) eliminate each identified turn that is either climbing 
(by a rate of climb threshold) or autorotation (by an engine torque threshold), and 3) prorate to 
45-degree turns by AOB range. On the surface, this approach is very similar to how RR works. 
However, there is a key difference that is both an advantage of this method and a weakness in 
current RR software. The focus of the first step is to identify a single continuous turn from 
beginning to end, regardless of climb rate or torque levels. Then, the entire turn is classified as 
either generic, climbing, or autorotation turn and 30/45/60 AOB using the threshold criteria. This 
approach guarantees that each turn is counted as a single occurrence, which is very different 
from how RR works. RR decides which type of turn is being observed every second and when a 
climb rate or torque threshold is crossed during a turn, the classification is changed immediately, 
giving the appearance of two adjacent turns. When roll angle is also increasing or decreasing, the 
two adjacent classifications can have different AOB prorates as well. 

Thresholds for the truth parametric definition were developed for level and descending 45-degree 
right turns. Because the climb rate and torque thresholds are imposed as a second step prorate of 
occurrence, they are not considered in the broad turn definition, but are imposed as a requirement 
on a statistic (max/min/average) of the climb rate and torque values across the entire occurrence. 
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Corrected NZ was not available in parametric data to include in the truth definition. Though this 
parameter could have been recalculated off board, it was also known through previous work that 
banked turns consistently cross moderate pullout thresholds, which trigger false-positive 
indications of a pullout during a turn. It was desired to eliminate this issue from the truth 
definition by removing the corrected NZ term. Further analysis of other UH-60M flight test data 
sources needs to be done to establish the proper criteria to distinguish banked turns from rolling 
pullouts. Given these considerations, the resulting truth definition for the CWC turn 45 R regime 
is shown in table 16. 

Table 16. The CWC turn 45 R truth regime definition 

Parameter 
Expression 
(Hysteresis) 

Roll Attitude (degree) > 10 (3) 
Prorates 

Parameter Statistic Expression 
Roll Attitude (deg) Max < 50 
Roll Attitude (deg) Max ≥ 35 
Altitude Rate (fpm) Min < 600 
Total Engine Torque (%) Max > 10 

 
fpm = feet per minute 

 
4.3.2.3  Definition of Turn Target Regimes 

IVHMS regimes that map directly to the CWC turn 45 R in table 15 were selected as the target 
regime set with a minimum duration of zero seconds. 

4.3.2.4  Baseline Turn RR Performance 

Baseline results of the target set compared to the truth definition are shown in table 17. 
Combining the target set into a single regime cluster and counting occurrences of the cluster 
resulted in a count accuracy of 93% of the truth regime. However, duration was very low at 27% 
accuracy, which is true for all measures of duration, such as mean duration and maximum 
duration. An example of a turn maneuver for which the duration was under-represented is shown 
in figure 10. In this plot, the regime sequence is shown at the top with the target regimes 
highlighted in red blocks. The true regime duration, according to the parametric definition, is 
shown by the dark red portion of the curves that represent the parametric data. Though the target 
regimes were correctly identified at some point during the turn, several other non-target regimes 
were also identified, which account for the inaccuracy in duration. There are also three 
occurrences of the target regime during this single turn contributing to a problem of  
over-counting occurrences. Note, however, that the occurrences were not over-counted when 
considering the total sum of target regime occurrences in table 17 as compared to the 
occurrences of the truth regime. 
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Table 17. Baseline RR performance for 45-degree right turn 

Statistic Target Regimes Truth Regime 
Mean Duration(s) 5.8 19.4 
Median Duration(s) 5.0 16.1 
Duration Std(s) 5.5 9.4 
Minimum Duration(s) 1.0 7.1 
Maximum Duration(s) 34.0 52.7 
Total Duration(s) 306.0 1105.5 
Counts 53 57 
Percentage 0.77 2.65 

 

 

Figure 10. Example of turn RR before clustering 
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4.3.2.5  Selection of Turn Cluster Regimes 

The frequency of adjacency of non-target regimes from the CERDEC testing is shown in  
table 18. Examination of these regimes and of individual turn maneuver plots revealed several 
issues affecting the inaccuracy in duration. These issues and proposed mitigation strategies are as 
follows: 

1. Turn entry and turn recovery regimes are explicit regimes in the UH-60M RR software 
and take up time from the turn. These regimes map directly to the CWC with an AOB 
prorate, but, when recognized, they are not associated with an AOB and, therefore, 
cannot be mapped to the CWC by themselves. The association of entry and recovery 
events to an AOB must be made by considering the middle portion of the turn. Rather 
than identifying entry and recovery independently from the turn maneuver, a simpler 
approach is to cluster recognized entry and recovery regimes with the turn maneuver and 
count entry and recovery occurrences implicitly by the occurrences of the turn itself. It is 
also noted that not every turn has a recognized entry and recovery. The proposed 
approach of implicitly counting entry and recovery guarantees that every recognized turn 
results in one count of an entry and one count of a recovery. 

 
2. Moderate rolling pullouts are often falsely triggered during turns because of inadequate 

thresholds for corrected NZ at high roll angles. Because the CERDEC flight test did not 
assess rolling pullouts, a means to detect them accurately still needs to be determined 
through further study of parametric data from other test data sources. However, a load 
factor threshold that varies with roll angle is a potential solution. 

 
3. Climbing and autorotation turns are frequently classified with level and descending turns. 

It was found that many turns have large variations in climb rate and engine torque, and 
can cross several boundaries in one continuous turn. A turn may start climbing but not 
maintain the climb rate throughout. It is proposed that turns are classified as climbing 
only if the climb rate is maintained throughout because a dropping off of climb rate is not 
characteristic of a true climbing turn. It is also proposed that a turn is classified as an 
autorotation only if it maintains autorotation throughout. Therefore, climbing and 
autorotation turns will be clustered with level or descending turns only if they occur 
adjacent to level or descending turns.  

 
4. Many 30-degree turns were observed to occur during an intended 45-degree turn. This 

problem is due to the reclassification issue when a torque or climb rate threshold is 
crossed while AOB is climbing or tapering. In the example from figure 10, the 45-degree 
turn starts out level but then starts descending. As it is descending, the roll angle tapers 
off below the minimum threshold for a 45-degree turn. Because RR treats level and 
descending turns as different regimes and classifies regimes on a second-by-second basis, 
it finds the descending turn and assigns it to 30-degrees AOB. The clustering approach 
can solve this by including all lower AOB turns as part of the cluster set of a given turn 
definition. This also introduces the need for prioritization of cluster definitions, which is 
discussed further in section 4.3.2.7. 
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The final set of cluster regimes is shown in table 19. Note that none of the clustering approaches 
previously discussed in this section require a persistence parameter. 

Table 18. The IVHMS regimes bordering 45-degree right turn target regimes 

Regime Before (%) After (%) Total (%) 
91: Right Turn Entry 81.132 0 40.566 
93: Right Turn Recovery 3.774 67.925 35.849 
79: Right Rolling Pullout to 1.2 9.434 18.868 14.151 
37: Right Climbing Turn 0 5.66 2.83 
21: Level Flight Between 0.5 VH 0 3.774 1.887 
72: Autorotation Right Turns 1.887 1.887 1.887 
59: 30 AOB Level Right Turn, 10 0 1.887 0.943 
67: 30 AOB Descending Right Turn 1.887 0 0.943 

 
Table 19. The CWC turn cluster regime set 

Cluster Regime 
37: Right Climbing Turn 
59: 30 AOB Level Right Turn, 10° to 35° AOB 
67: 30 AOB Descending Right Turn 
72: Autorotation Right Turns 
79: Right Rolling Pullout to 1.2 VH , Up to 1.8 Gs 
87: Other Maneuver 2, Right Climbing Turn Exceeding AOB Limits 
91: Right Turn Entry 
93: Right Turn Recovery 
59 62: Level Right Turns 
67 70: Descending Right Turns 

 
4.3.2.6  Clustered 45-Degree Right-Turn Regime Results 

Results after applying the 45-degree right turn cluster definition are shown in table 20. These 
missed occurrences can all be properly captured as turns by clustering, but need further 
processing of roll attitude data to be properly mapped to the CWC during clustering  
post-processing. Ultimately, the onboard RR software should be refined to reduce the amount of  
post-processing necessary to properly classify all data. 

The most significant improvement is that the clustered turn duration performance statistics, such 
as mean, standard deviation, and maximum and minimum duration, agree well with the truth 
regime. Both the total duration and the occurrence count of the clustered turns are 81% accurate 
relative to the truth regime, compared to 28% for the duration and 93% for the occurrences 
before clustering. The fact that clustering is consistently counting occurrence and duration means 
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that it is properly counting whole maneuvers and their durations for the maneuvers that were 
captured. The clustering approach appears to have reduced the accuracy of the occurrences from 
93% to 81%, but closer inspection showed that the accuracy metric on occurrences calculated 
before clustering was flawed and fortuitous. While the pre-clustering result was 93% accurate 
(53 of 57) on counts, only 46 of the 57 occurrences of the truth regime were captured by the 
target regime, and an additional seven were over-counted during the same maneuver, leaving 11 
occurrences that were misclassified by RR. By correcting the over-counting problem, the 
clustering approach revealed the full potential and allowed for a cleaner assessment of RR. This 
is best shown by comparison of the before-clustering example maneuver in figure 10 to the same 
maneuver after clustering in figure 11. The pre-clustering regime sequence counted three 
occurrences of the turn whereas the post-clustering regime sequence correctly counted a single 
occurrence for the entire turn.  

Further investigation into the 11 misclassified occurrences of the 45-degree right turn revealed 
the following two primary scenarios that prevented RR from identifying the correct target 
regime:  

1. The peak roll angle, which is ultimately used to classify the turn’s AOB, was achieved 
briefly while the aircraft was climbing. When climbing, turns are not classified by AOB, 
so the peak AOB information is lost. This is not a problem for pure climbing turns 
because these maneuvers are not prorated by AOB. However, when a climbing turn 
briefly occurs at the peak roll angle, the entire turn is not considered a climbing turn and, 
therefore, needs to be prorated by AOB. In these cases, the turn is categorized into the 
next-highest AOB that was captured by RR. An example of this case is shown in figure 
12. Here, a 45-degree turn maneuver is flown as shown by the roll attitude, but RR only 
classifies turn entry, 30-degree right turn, and right climbing turn. These regimes are 
shown in blue because they are cluster regimes for the 45-degree turn, but the 45-degree 
turn target regime was never classified. The 45-degree turn was achieved during a brief 
climbing portion, which prompted the climbing turn classification at that same point in 
time. Although the clustering approach for 45-degree right turns will not capture this 
maneuver, the maneuver would still be captured as a turn, but would be mapped to either 
climbing or 30-degree turns. 

 
2. No turn event was actually identified by RR, but a turn entry and turn recovery were 

identified. In some cases, a turn entry and turn recovery occurred back to back and there 
was no time to identify the actual turn. In other cases, a moderate rolling pullout was 
identified between the entry and recovery, but no turn, as shown in figure 13. In this 
example, a rolling pullout was captured in the middle of a turn entry and turn recovery. It 
is possible that rolling pullouts would be clustered with adjacent turn entry and recovery 
regimes, in which case these would not be treated as misclassified turns. Further study of 
the difference between turns and rolling pullouts would be required to develop truth 
criteria that distinguish the two.  

These missed occurrences can all be properly captured as turns by clustering, but further 
processing of roll attitude data is needed to be properly mapped to the CWC during clustering 
post-processing. Ultimately, the onboard RR software should be refined to reduce the amount of 
post-processing necessary to properly classify all data. 
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Table 20. Clustering RR performance for 45 degree right turn 

Statistic Target Regimes Truth Regime 
Mean Duration(s) 19.5 19.4 
Median Duration(s) 17.0 16.1 
Duration Standard(s) 9.5 9.4 
Minimum Duration(s) 6.0 7.1 
Maximum Duration(s) 51.0 52.7 
Total Duration(s) 897.0 1105.5 
Counts 46 57 
Percentage 2.2 2.7 

 

 

Figure 11. Example of turn RR after clustering 
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Figure 12. Example of a 45-degree turn classified as a 30-degree and climbing turn 
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Figure 13. Example of a 45-degree turn classified as a rolling pullout 

4.3.2.7  Turn Cluster Prioritization 

It was noted in section 4.3.2.6 that when developing a cluster definition for 45-degree turns, a  
30-degree turn was often identified during the 45-degree turn. In these cases, the 30-degree turns 
were clustered within the 45-degree turn. For the same reasons, the same issue can occur with 
60-degree banked turns. Therefore,  to develop and apply the 45-degree turn cluster definition to 
real fleet data, the 60-degree turns must be clustered before the 45-degree turns so that any  
45-degree turn classifications that are really part of a 60-degree turn are not misclassified as a  
45 degree turn. Clustering requires a hierarchical approach with which each cluster definition is 
assigned a priority rank. Though 60-degree and 30-degree turns were not validated in this effort, 
cluster definitions were developed for them using the same basic cluster regimes that were 
selected for the 45-degree turn to enable accurate clustering of the 45-degree turns. 

4.3.3  Regime Load Analysis Using Clustering Capture Windows 

Key dynamic system vibratory loads measured during the clustered turn and the climb regimes 
on the CERDEC test aircraft were compared to the baseline loads measured during the UH-60M 
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FLS for the same regime as another means to evaluate the clustering methodology. Comparisons 
were made only where the CERDEC GW/CG configuration matched or was in the vicinity of the 
FLS configuration. The two load measurements that were made on the CERDEC aircraft that 
enabled this analysis were the MRLSS link load and the MRSEBL. The load capture windows 
for the UH-60M FLS are based on pilot- or engineer-reviewed log cards. Load capture windows 
for CERDEC testing are based on clustered RR results. Figures 14 and 15 show a comparison of 
the maximum vibratory MRLSS load and MRSEBL load, respectively, during climb, turns, and 
pullouts from both tests.  

Overall, the lateral servo loads compare favorably with flight test loads, shown in figure 14. For 
45-/60-degree turns and moderate/severe pullouts, the baseline FLS conditions generated much 
more aggressive servo loads due to much higher speeds at the extreme conditions, which have a 
tendency to produce blade stall. This was expected because extreme FLS maneuvers were not 
included in the CERDEC flight test because their test pilots were not experienced in performing 
such maneuvers. Shaft bending loads from the CERDEC tests were also similar to previously 
measured loads with a few notable exceptions for the 45-degree turns, shown in figure 15. It was 
found that, in some cases, the CERDEC test aircraft achieved higher levels of VH airspeed at the 
high GW with ESSS configuration, which was accomplished during the descending phase of a 
45-degree turn that started out level with high speed. Some other cases of higher shaft bending 
load were attributed to the longitudinal cyclic input required to generate an increased climb rate 
in the middle of the turn. The fact that the loads were higher for a few of these maneuvers is not 
surprising because of the intended complex nature of these maneuvers, which are not represented 
in the baseline FLS test data. The RR performance during these maneuvers was found to be 
satisfactory.  

Below each scatter population in figures 14 and 15 is the number of data points contained within 
each population. Because the CERDEC load statistics were captured using RR with clustering as 
a capture window, the analysis was not bound to the run log in the same way the baseline FLS 
test data was. The turns captured in the CERDEC analysis were a combination of intended run 
log maneuvers, unofficial practice runs, and natural turns performed in the course of navigation. 
By using RR to define a capture window for loads acquisition, the quantity of load points made 
available is much higher. It took six test flights on the CERDEC aircraft to generate the 
maneuver quantity shown in these figures, compared to more than 20 test flights of the baseline 
UH-60M FLS test vehicle. Part of this is attributed to the high turn count within the CERDEC 
testing. However, the use of RR capture windows to gather load statistics means that each flight 
has 100% coverage of maneuver loads acquisition from takeoff to landing. As RR matures, there 
is a huge opportunity to integrate these methods into the flight test process to enhance structural 
maneuver load databases without any extra flying. 

Also shown for each load in figures 16 and 17 is a comparison of maximum vibratory load for 
servo and shaft bending loads, respectively, versus cluster count for climb and 45-degree 
left/right turns conducted during CERDEC testing. Cluster count is the number of regimes that 
were combined into the target regime for each maneuver occurrence. A cluster count of 0 
indicates there was no clustering applied to that maneuver, whereas a cluster count of 10 means 
10 regimes were combined into the target regime for that maneuver. An evaluation of loads as a 
function of cluster count was done to understand if highly clustered maneuvers (exceeding 10) 
had any tendency to have higher loads associated with them. Figures 16 and 17 show that many 
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of the highest vibratory loads occurred with very moderate cluster counts of 2–4. Extremely 
complex maneuvers with many cluster counts do not have a greater tendency than simpler 
maneuvers to produce high peak loads. 

 

Figure 14. The MTLDD loads during CERDEC maneuvers 
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Figure 15. The MRSEBL loads during CERDEC maneuvers 

 

Figure 16. The MRLSS maximum loads versus cluster count per cluster  
from CERDEC testing 
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Figure 17. The MRSEBL maximum load versus cluster count per cluster  
from CERDEC testing 

4.4  Enhanced RR Validation Approach 

The validation approach followed thus far in the development of regime cluster definitions is 
useful in guiding the design of a cluster, but it has drawbacks. First, as discussed in section 2.1.1, 
the metrics used thus far in assessing accuracy can provide misleading results about the 
performance of a regime definition. Second, the parametric truth regime definitions themselves 
are essentially an independent RR approach and should also be validated against flight test data. 
This presents a problem because any truth parametric definition must have some prior validation 
against an even better set of truth data. At some point in the process, there must be a qualitative 
expert assessment of the maneuver. These expert classifications are made available in structural 
FLS test programs via maneuver-coded flight run logs. To use these expert classifications to 
assess RR performance, a few issues need to be sorted out relative to the uniqueness of FLS data. 

The most unique aspect of the flight test log card approach is that the start/stop times of transient 
maneuvers capture a larger window than the start and end of the maneuver itself. An example of 
this is shown in figure 18. Here, a 45-degree left climbing turn maneuver is flown, but the 
capture window includes non-climbing turn data at the beginning and end. This makes the 
transient maneuver duration statistics difficult to attain because the true start and stop time of the 
maneuver cannot be achieved without laboriously going through hundreds of maneuvers and 
assigning them manually. Though algorithmic approaches may be used, the objective is to avoid 
the dilemma posed when validating an algorithm with another algorithm. Because transient 
regimes are traditionally quantified by occurrences rather than duration, it is proposed that the 
validation of transient regime classification methods be made on the basis of occurrence or 
detection accuracy and not on duration. It is far more useful to know the true occurrence rate of 
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transient regimes in the fleet than it is to accurately know their individual durations. For  
steady-state regimes, however, it is expected for a flight test pilot to hold a steady-state regime 
for the entirety of its recording. Therefore, duration metrics are possible and are valuable for the 
validation of steady-state regimes. 

 

Figure 18. Example of run log markers for transient maneuver identification 

Another challenge is that the truth regime labels are not equivalent to HUMS regime labels. 
However, this issue can be overcome by mapping both HUMS regimes and Advanced Data 
Acquisition and Processing System maneuvers to a common labeling system. This common 
regime labeling is found in CWC regimes. 

From the lessons learned in developing the cluster definition for climbs and turns, it is necessary 
to clearly establish the definition of regime accuracy and the methodology behind assessing the 
accuracy. The previous approach of simply counting occurrences was problematic when there 
was a combination of mis-detects and over-counts, because the over-counts could mask the 
presence of mis-detects. Rather than counting the total number of detections, accuracy of 
detection should always be assessed by counting the number of mis-detects, or false negatives. If 
a truth regime is flown 100 times and four of those 100 occurrences are not detected, then the 
accuracy is (100–4)/100 or 96%. This does not necessarily mean that there were 96 detections, 
because there may still be the tendency to over-count in some cases. The tendency to over-count 
leads to the need for an additional metric for transient regime performance. This metric is the 
count ratio metric for transient regimes. The count ratio is the average number of detections per 
truth occurrence when at least one detection is made. When the count ratio is one, then the 
regime algorithm is perfectly detecting one occurrence per truth occurrence. A count ratio of 2 
means the regime algorithm tends to double count. By only including the cases in which at least 
one detection is made, the count ratio does not account for mis-detects and, therefore, cannot be 
obscured by the combination of mis-detects and over-counts. A previous example for which this 
would be important to assess is shown in figure 10, in which three correct turns were classified 

Beginning and End of 
Transient Regimes 
Should Not Be Treated as 
Error 
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during a single turn. Using both of these metrics together was found to be very useful in 
revealing the underlying strengths and weaknesses in RR.  

A simpler approach was taken for steady state regimes. Because flight test capture windows 
contain only the intended steady state regime, the accuracy metric was applied on a duration 
basis defined as the total time detected by RR divided by the total time spent in the flight test 
capture window. The time spent in all other regimes during the flight test capture window was 
also recorded so that the results not only indicated the accuracy of the target regime, but also 
highlighted areas of focus for regime definition improvements. 

Though the accuracy metric is the most basic metric for assessing the performance of a regime 
definition, the frequency and the source of false positives are important in understanding regime 
performance. False positives are when a regime is recognized, but it has not actually occurred. In 
these cases, it is most likely that some other regime occurred that is very similar to the 
recognized regime, but not the same. It is conceivable that a particular regime definition can be 
100% accurate and also have a tendency toward false positives associated with other similar 
regimes. The most important quality is that regime classification is conservative in the presence 
of false positives and sufficiently accurate (e.g., 95%) to instill confidence in algorithm 
performance and not unduly undermine benefit because of overly conservative methods. 
However, false positives will create a problem when the associated similar regime causing them 
becomes the subject of validation itself. In that scenario, the previously identified false positives 
will now be considered mis-detects for the new regime, and would likely require a change to 
both regime definitions to be correct. Therefore, it is important to understand false positives and 
what is causing them, and to minimize them in the development of the regime definition to avoid 
future algorithm changes and re-validation efforts as more regime definitions are refined, 
developed, and validated. 

This approach to assessing regime accuracy was implemented on an existing set of UH-60M 
flight test data, from test flights conducted on aircraft M2 between July 11, 2006 and July 24, 
2007 to support qualification of the UH-60M IVHMS. For these flights, the Goodrich IVHMS 
was installed and configured with a preliminary regime configuration. These are the best-known 
datasets that SAC has to validate UH-60M RR using flight test declared truth regimes during an 
FLS. The regime metrics described in this section were applied to the entire flight test data set 
with the pre-production regime configuration before clustering applied, and again after clustering 
was applied for the climb and turn regimes. 

The validation results for transient turn regimes are shown in table 21 for both before and after 
clustering. The most significant improvement due to the clustering methodology is that the count 
ratio collapsed perfectly to 1 over all occurrences in the flight test data. When looking at the 
occurrence accuracy in table 21 for before and after clustering, however, it appears to have 
become worse with clustering. However, this is due to similar reasons, as discussed in section 
4.3.2.6. Before clustering, RR was over-counting, with more than one classification for each turn 
and, therefore, had more than one opportunity to get the right classification at some point during 
the turn. An example of this is shown in figure 19, in which RR classified a 30-, 45-, and  
60-degree turn during the same maneuver. Because clustering collapses the entire regime 
sequence into one maneuver during the turn, it has only one opportunity to get the right 
classification. By looking at all the turn events in a confusion matrix, as shown in table 22, it is 
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shown that the underlying cause of mis-detection is that RR is classifying some turns into the 
next-higher AOB prorate category. For example, this table shows that there were 85 (74+11) 
occurrences of 30-degree left turns, and 74 (87%) of them were correctly classified as 30-degree 
left turns, whereas 11 were conservatively classified as 45-degree left turns. For 60-degree left 
turns, 85 of them were flown, and 85 (100%) were correctly classified as 60-degree left turns. 
Because RR makes the AOB prorate decision directly on the roll angle, and because the flight 
test and RR prorate bands are identical, all of the cases for which RR classified into the next 
higher AOB category were correct classifications, and the perceived inaccuracy of RR is actually 
attributable to overshooting the target maneuver in the flight test. For the previous example in 
figure 19, clustering collapsed the sequence into a single 60-degree AOB turn. The flight test 
classification for this turn event was actually a 45-degree turn; however, the maximum AOB 
slightly crossed into the 60-degree band. This highlights the fact that any future uses of flight test 
truth classifications need to be thoroughly quality checked for consistency with established 
prorate thresholds to get a more accurate picture of RR performance against flight test truth data. 

The validations results, before and after clustering, were found to be very low because of the  
pre-production version of the RR algorithms that were onboard at the time of this M2 test. The 
issue causing low accuracy for the climb regime was a poorly performing sideslip regime that 
was causing excessive false-positive sideslip indications. As a result of this baseline testing, 
production changes were made to the sideslip definition to eliminate the false positives that were 
interfering with the other regimes, such as climb. Because this same problem was not present in 
the CERDEC test data, the clustering approach was not designed to address it. Therefore, the 
benefits of clustering are not fully realized for the climb regime on this legacy test data. 

Table 21. Turn validation statistics from FLS 

 Total 
Occurrences 

Before Clustering After Clustering 
 Accuracy Count Ratio Accuracy Count Ratio 
Turn 30 L 85 93% 1.2 87% 1 
Turn 30 R 85 93% 1.2 85% 1 
Turn 45 L 85 95% 1.7 82% 1 
Turn 45 R 85 81% 1.6 63% 1 
Turn 60 L 85 98% 1.6 100% 1 
Turn 60 R 82 91% 1.6 100% 1 
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Figure 19. Sample turn regime classification before clustering 

Table 22. Turn confusion matrix after clustering 

  Regime Classification 
  Turn 

30 L 
Turn 
30 R 

Turn 
45 L 

Turn 
45 R 

Turn 
60 L 

Turn 
60 R 
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Turn 
30 L 74  11    

Turn 
30 R  72  13   

Turn 
45 L 1  70  14  

Turn 
45 R    54  26 
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60 L     85  

Turn 
60 R      82 
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5.  VML AND GW/CG 

5.1  VML 

5.1.1  Background 

The ability to measure key loads on operational rotorcraft could radically change the way 
rotorcraft are designed, qualified, and managed throughout their life cycles. The lack of such 
measurements is indicative of the perceived difficulties, increased weight, and reliability issues 
associated with deploying the many physical sensors that would be required to monitor all such 
local loads, especially in rotor systems. SAC has been developing an approach called VML that 
estimates rotorcraft loads using parametric data available from a state-of-the-art aircraft HUMS. 
VML is one of a few key technologies that will enable a transition from a simple  
flight-hour-based program to more advanced UBM programs for rotorcraft.  

As a significant step toward achieving UBM, SAC has begun applying these methods to archived 
S-92® fleet data to support internal engineering decision-making processes that provide 
significant near-term value and build confidence in the methods. These steps are required before 
making the investment and making the decision to implement such a paradigm shift in product 
design and fleet management. Some of the near-term applications have been to: 1) support  
root-cause analysis for issues experienced in an aircraft to help determine whether the issue is 
aircraft- or operator-specific or a fleet-wide issue that may require a retrofitted engineering 
change, 2) assess loads incurred during a flight event to help determine appropriate maintenance 
actions, and 3) reassess the usage spectrum, especially applied pro-rates. Recently, a VML model 
was applied to more than 500,000 flight hours of archived historical fleet data for the  
S-92 rotorcraft, and the estimated tail rotor torque loads were used to support assessment of the 
actual fleet load spectrum to allow refinement of the prorating of severity of key critical regimes 
for use in design, testing, and certification of drivetrain components. 

A VML model estimates high-frequency helicopter dynamic load profiles from once per 
revolution average helicopter state parameters. Training data for the model is comprised of 
measured dynamic loads and associated helicopter state parameters derived from structural FLS 
testing. During model training, important dynamic load waveform mode shapes are extracted 
from the measured load using proper orthogonal decomposition (also known as principal 
component analysis or singular value decomposition). A linear regression model is then 
developed to map helicopter state parameters to the mean load and mode shape coefficients. This 
process is shown in figure 20. 

The result of model training is a library of fixed mode shapes and parameter-dependent mode 
coefficients that can be used to estimate the dynamic load waveform, steady load, and vibratory 
amplitude in real time or in a post-processing environment. To apply VML, the mode 
coefficients are estimated from operational HUMS-recorded helicopter state parameters and 
applied to the extracted mode shapes from training. 
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Figure 20. The VML process 

5.1.2  Application of VML to CERDEC Flight Test 

Two VML models were previously developed from UH-60M FLS test data for each of the two 
loads measured during the CERDEC flight test. The models were designed to be globally valid 
and operate on an IVHMS compatible set of parametric input data, which is listed in table 23. 
These models were demonstrated for the CERDEC aircraft using flight data from June 11, 2013. 

Table 23. The VML input parameters 

IVHMS Parameters 
NR PITCHRATE  
Outside Air Temperature  ROLLRATE  
BAROCORRECTEDALT  YAWRATE  
ALTITUDERATE  CYCLICLONGDCU  
CAS  CYCLICLATCAL  
VERTACCEL  PEDALCALIBRATED  
TORQUE COLLECTIVEDCU  
PITCH STABILATORPOSITION 
ROLL  
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When demonstrating the models, an issue was found that prevented analysis of data from an 
entire flight which, upon investigation, was found to be a known problem inherent within the 
UH-60M. Lateral stick position was found to become invalid many times throughout each flight, 
both intermittently and constantly. This parameter is important to many VML and CG models, 
and the invalid data affects how much meaningful model correlation data can be extracted from 
the CERDEC testing. Examples of the impact of this problem are shown in figure 21, where the 
time history of both the lateral stick position and the MRSEBL VML amplitude are plotted for 
the entire flight. Note the pervasiveness of the invalid stick position data that results in the solid 
red band where the VML model estimate intermittently goes out of range. The root-cause of this 
data problem remains unknown and there is no workaround available until this root-cause is 
established and fixed within the UH-60M avionics system that manages digital data bus traffic, 
which is the IVHMS data source for this parameter.  

 

Figure 21. The UH-60M lateral stick position issue and resultant VML estimates 

To enable a comparison of VML load performance, a segment of data from the 6/11 flight was 
selected that had both clean input data and interesting load excursions on both load 
measurements. This clean segment of flight test data is shown in figure 22. In this figure, the 
measured load of both the MRSEBL and MRLSS are presented as full-time history load 
waveforms. Below each direct measured load is the VML estimate of the load amplitude 
alongside the measured load amplitude.  

M
R

 S
ha

ft 
B

en
di

ng
 

(in
-lb

) -
 M

R
SE

B
L 

Lo
ng

itu
di

na
l S

tic
k 

Po
si

tio
n 

(%
) 

49 



 

 

Figure 22. The VML model demonstration data—clean segment 

The most important feature of these loads in UBM applications is the vibratory amplitude. A 
comparison of the VML estimated and measured amplitude is shown in the scatter plots in 
figures 23 and 24, respectively, for the shaft-bending and servo loads. In these plots, perfect 
agreement would result in all data being plotted on a 45-degree line. The desired behavior of 
uncertainty associated with VML loads estimates is for an equal likelihood of over- and  
under-prediction that statistically cancels out when calculating UBM benefit. As shown in figure 
23, the VML estimate of shaft-bending vibratory amplitude agrees well at high loads, but 
generally over-predicts lower amplitudes. VML servo load estimates are generally  
over-predicted at higher amplitudes but are more accurate at lower amplitudes, as shown in 
figure 24. To further evaluate the accuracy of the vibratory amplitude prediction, both the 
measured and VML predicted loads were amplitude-cycle counted and ranked in a cumulative 
distribution. Accuracy was then evaluated against the highest amplitude cycles that were 
counted. This comparison is shown in figure 25. These analyses show different results for each 
load model. The servo load model does not perform as well as when it was originally developed 
on UH-60M flight test data, and over-predicts the highest vibratory loads. The shaft-bending 
model, however, over-predicts in the low-amplitude range but is extremely accurate in the  
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high-amplitude range. Analysis of the amplitude range in the top 1% of loads shows an accuracy 
of 97% on vibratory amplitude prediction. 

 

Figure 23. The MRSEBL VML vibratory amplitude correlation 
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Figure 24. The MRLSS VML vibratory amplitude correlation 
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Figure 25. Measured load to VML cycle count comparison 

Better results were obtained when demonstrating real-time VML load estimation on the 
Rotorcraft Aircrew Systems Concepts Airborne Laboratory aircraft, including results for main 
rotor shaft bending and lateral servo loads [4]. Though the results shown herein are overly 
conservative, they do show, along with the results documented in reference 4, the potential for 
load estimation methods, which will require a probabilistic framework to accommodate 
reasonable model error distributions to achieve UBM benefits. As shown in reference 4, the 
performance of VML models varies by component load. Model performance is much better for 
some component loads than others.  

The level of accuracy required for models depends on the specifics of the UBM application. For 
example, excellent prediction of quasi-steady load values may be much more important than 
accurate prediction of vibratory amplitudes or vice versa for a particular component load and 
UBM application. Reference 5 summarizes one such UBM fleet analysis case study showing the 
viability of the use of these VML approaches and one method for accounting for model 
uncertainty. These errors can be evaluated either globally or focused on loads above a damaging 
threshold. Though the shaft bending model results shown herein do not predict well in the lower 
amplitude range, it may not be worth the additional engineering effort to improve the low 
amplitude prediction if the model can be shown to be accurate when loads are damaging. The 
servo load model results highlighted herein and in reference 4 show that some component loads 
are more difficult to predict than others, and may not be as suited for a UBM application until 
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further model development can be shown to improve the accuracy. In delivery order (DO) 0002, 
more effort will be expended in achieving VML results appropriate for a specific UBM 
application and the objective mock credit; whereas in DO 0001, the performance of existing 
VML models was demonstrated without any effort to refine the models for the CERDEC aircraft 
configuration. 

5.2  GW AND CG ESTIMATION 

5.2.1  Background 

A unique aspect of GW and CG in fatigue life substantiation is that there is no single worst-case 
GW for all components and subsystems. Helicopter components may experience higher loads at 
low GW because of the increased maneuverability and capability of an aircraft, whereas other 
components may experience higher loads at high GW because of the increased weight. Likewise, 
variations in CG can affect fatigue life differently for different components. Nevertheless, 
component life analysis often employs the use of GW/CG prorates based on an assumed future 
GW usage distribution within broad high/low categories and CG within broad fore/aft categories. 
The ability to estimate GW and CG from operational HUMS data will enable a range of 
applications in UBM that can provide both component retirement-time benefits and improved 
safety. For example, existing usage prorates that depend on assumed GW and CG distributions 
can be updated to account for actual distributions on a global fleet-wide scale or can be adjusted 
for sub-fleets or individual aircraft that have different distributions than the rest of the fleet. It is 
also envisioned that the ability to estimate GW and CG in real time has applications beyond 
UBM that can enhance operational awareness and improve the safety of flight. There have been a 
number of accidents throughout the helicopter industry in which the root-cause was the attempt 
to fly aircraft outside operational limits on GW/CG. To this end, SAC has developed a set of 
regime-specific models for the UH-60M to predict vehicle GW and CG from HUMS parametric 
data. Models were developed to operate in level flight, hover IGE, and hover OGE, and were 
trained on UH-60M production FLS test data. Ultimately, logic will be developed to fuse 
estimates from these three regimes to provide a seamless time history of GW and CG. 

5.2.2  Application of GW Modeling to CERDEC Flight Test 

The data quality issues with longitudinal stick position that were discussed in section 5.1.2 and 
shown in figure 21 severely impact the ability to predict CG in flight as the CG model relies on 
clean stick position data. Therefore, this section focuses on the demonstration of the GW models 
on the CERDEC flight test data. 

Applying the UH-60M GW models to operational HUMS data requires two checks on the 
parametric data, which are conducted once per second (i.e., the same rate as parametric data is 
recorded). First, for the model estimate to be considered valid, the aircraft must be within one of 
the three valid regimes (i.e., level flight, hover IGE, or hover OGE) within which the models 
were developed to operate. The result of this check is recorded in a Concept of Operations 
(CONOPS) parameter, which indicates whether the aircraft is in level flight, hover IGE, or hover 
OGE. Second, the input data is compared against the domain of the training data to determine if 
the model is interpolating or extrapolating. A STATUS parameter indicates whether the input 
data resides within the domain (i.e., interpolation) or outside the domain (i.e., extrapolation). The 
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STATUS parameter takes on a value of zero when the model is interpolating, and positive 
integers indicate that the model is extrapolating, with each positive integer indicating more 
information about the nature of the extrapolation. These parameter checks act as a capture 
window to restrict the application of the models to the operational space over which the models 
were developed and validated. Model estimates are considered valid only when CONOPS and 
STATUS are both zero. 

GW models were developed from UH-60M FLS test data, which took place between September 
2003 and August 2004 at the Sikorsky flight test facility in West Palm Beach, Florida. These 
GW models were evaluated against the CERDEC flight test using GW truth data provided for 
each flight by the CERDEC test team. Truth GW was recorded by CERDEC by weighing the 
vehicle empty and using a standard weight and balance program to calculate the initial GW for 
each flight from the known configuration, fuel, and payload weight. Truth GW through time was 
calculated by HUMS from fuel burn and was stored in the HUMS parametric data. A visual 
example of the model estimate, STATUS, and CONOPS output parameters over an entire flight 
(from Flight #2) is shown in figure 26 for the level flight and hover IGE model. In this example, 
the level flight model outputs are shown as the red curves and the hover IGE model outputs are 
shown as the blue curves. The GW is shown in the first plot, with the truth GW shown as a light 
gray curve. For the level flight and hover IGE models, GW output is shown only when the 
models are valid. The second and third plots from the top show the CONOPS and STATUS 
output values, respectively, which combine to determine model validity. The last two plots show 
calibrated airspeed and engine torque, respectively. These figures show how frequently and 
briefly each of the model capture windows are valid through the flight, and the level of  
post-processing required when distilling the results into a best estimate of GW. 
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Figure 26. Level flight and hover IGE GW model output across an entire flight 

Because the three GW/CG models are designed for specific regimes, valid estimates from each 
model are available only as frequently as the aircraft is in one of the three regimes. The 
collection of all GW estimate durations over the CERDEC testing is broken out by percentage 
from the three target regimes, as shown in figure 27. The level flight model is valid 45% of the 
flight time, the hover IGE model is valid 4% of flight time, and the hover OGE model is valid 
0.35% of flight time. For each regime, there is a smaller portion that corresponds to the 
frequency of simultaneously being in the target regime and being within the bounds of the 
training data. For both the level flight model and the hover IGE model, the models were 
interpolating approximately 12% of the time that they were being called by the CONOPS. This is 
because the flight test data that were used to train the models only covered a small space within 
the defined CONOPS. The hover OGE model, however, never interpolated over the entire six 
flights of CERDEC test data. This was found to be a limitation of the training database for the 
hover OGE model in that it did not include a broad enough range on density altitude, which is 
compounded by the fact that all training data were collected in a warm and humid climate. This 
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highlights the need for a more robust set of training data that includes real-world variations in 
operating environments to transition this technology.  

 

Figure 27. Valid flight time by GW model 

To evaluate the capability and potential of GW modeling, the level flight model results were 
analyzed for prediction accuracy across all valid estimates for all CERDEC flights. The result of 
this analysis is an error distribution for the level flight model, shown in figure 28. This includes 
absolute error as large as 50%, mean error of -5%, and root mean square error of 12%, all of 
which are much higher than that observed on previous blind evaluations of flight test data. Over 
the course of analyzing these results, it was discovered that the primary root cause of the large 
modeling errors was unsteady vehicle dynamics during the steady state model captures windows. 
This phenomenon is due to the use of broad state space assigned to the capture window, derived 
from RR definitions, which does not sufficiently account for vehicle dynamics. For example, 
many large errors were spot checked and found to be due to an accelerating or decelerating level 
flight condition. Figure 29 shows a zoomed-in example from figure 26, which focuses in on one 
of the largest errors from the level flight model. Here, it is shown that the large error is 
associated with unsteady airspeed and engine torque. Airspeed rate of change is not currently 
evaluated by the CONOPS and was not an issue in early model development and evaluation 
because of the nature of clean steady state FLS test data used to train the models. Based on this 
analysis, it is hypothesized that increased accuracy could be achieved by defining more 
sophisticated capture windows that also monitor rate of change of key parameters to ensure GW 
estimates are calculated for sufficiently steady-state data. 

Given the larger-than-expected modeling errors, the evaluation of the model’s predictive 
capability was desired when mapping GW to high/low categories, which is the initial application 
intended for this technology. A method was previously developed to bin GW into high/mid/low 
bins with an emphasis on getting high accuracy for high/low bins and treating the middle bin as 

Hover IGE 
4% Hover OGE 
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unknown. This middle bin can then be mapped to the worst case bin in component analysis, 
depending on the sensitivity of particular component loads to GW. To perform the analysis, truth 
GW is mapped to high and low categories and estimates are mapped to high/mid/low categories. 
Binning accuracy is defined as the probability that the truth GW is in the high bin, given that the 
model estimate is in the high bin and vice versa. For now, estimates in the middle bin are treated 
as unknown estimates and are not evaluated for accuracy. The high/low threshold was set to the 
middle of the GW range from this test, which is 19,000 lb. The width of the middle bin was 
varied to assess high/low bin accuracy for several width settings. A middle bin width of zero is 
equivalent to having no middle bin; increasing the middle bin width further separates the high 
and low bins. This methodology is shown in figure 30. As the middle bin width increases, more 
estimates are essentially thrown out, meaning the quantity of valid estimates decreases. The 
results in figure 31 show that, as the middle bin width increases to 2000 lb, the high/low binning 
accuracy converges to 97% at a cost of approximately 40% of the estimates being thrown away. 
This analysis demonstrates that there is great potential for GW models to accurately predict the 
time spent in broad GW usage categories, even if the desired precision in pounds is not yet 
achieved. The accuracy requirements of the model depend on the specifics of the UBM 
application. In DO 0002, more effort will be expended in achieving GW/CG results appropriate 
for a specific UBM application and the objective mock credit. 

 

Figure 28. Level flight GW modeling error distribution 
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Figure 29. Example of large level flight model error due to vehicle dynamics 
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Figure 30. The GW binning methodology 
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Figure 31. The GW binning accuracy 

6.  UBM PROCESS REVIEW 

6.1  CURRENT FATIGUE SUBSTANTIATION PROCESS 

Component fatigue life limits are established by helicopter OEMs using a traditional fatigue 
methodology based on Miner’s rule of cumulative damage to achieve 6–9’s reliability. 
Reliability of 6–9’s means that less than 1 part in 1 million will fail within its retirement time. To 
achieve this level of reliability, conservatism is allocated to each of the three fundamental 
uncertain quantities that determine the fatigue life of an aircraft component: strength, loads, and 
usage. The fatigue substantiation process consists of correlating laboratory fatigue test strength 
data with measured flight test loads and the customer's usage spectrum to produce dynamic 
component retirement times and inspection intervals that reduce the chance of catastrophic 
fatigue fracture to an extremely remote possibility. This process is shown in figure 32. 

Width of Middle Bin (lb) 
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Figure 32. Traditional fatigue substantiation process 

6.2  UBM Approaches 

UBM is broadly defined as making maintenance decisions, including component retirement, 
based on structural usage data, including regimes and loads. Usage data can either be measured, 
derived, or predicted, and can characterize the load history of a component, the maneuver history 
of an aircraft, or both. The objective of UBM is to collect more data at the aircraft or component 
level in the customer fleet to reduce the uncertainty in the component fatigue life associated with 
maneuver history and loads. By reducing uncertainty in the fatigue life, the retirement time of a 
component can be extended (or reduced) while maintaining 6–9’s reliability. 

UBM can be implemented either at the fleet level (part number) or the aircraft level (serial 
number). Fleet level approaches can involve the monitoring of sub-fleets that are characterized 
by a particular mission, customers that operate in specific environments, or can be applied to the 
entire customer fleet as a whole. Aircraft level approaches go one level deeper and treat 
individual aircraft by their unique usage history. 

UBM can also be implemented in different ways, which will likely be phased in over time 
because of different levels of complexity of the end-to-end UBM process. The long-term vision 
is that the UBM process will include real-time calculation of accumulated fatigue damage using 
individual aircraft usage and loads data acquired during flight and newer probabilistic safe life 
methods to determine when components should be retired based on established probabilistic 
reliability criteria. In this long-term vision, it may not be necessary to account for regimes, but 
use loads only to calculate fatigue damage. Furthermore, it may be possible to fully automate the 
calculations without an engineer in the loop. 
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However, the near-term implementation of UBM must coexist in a symbiotic way with the 
current fatigue substantiation practices and will require engineer-in-the-loop validation of UBM 
retirement time credits relative to published retirement times. These credits are  
backward-looking and are based only on the history of the aircraft on which a particular 
component was installed during its service life during the time it was installed. 

6.3  Proposed Serial Number UBM Credit Process 

Ensuring 6–9’s reliability using measured usage and loads data requires a new way of calculating 
the probability of failure that can accommodate measured or estimated data. There has been 
much research into various probabilistic approaches to fatigue life analysis, much of which can 
be used to support UBM credit calculations. The objective in a UBM credit calculation that is the 
focus herein is to determine the retirement-time extension of a part that provides a reliability that 
is equal to the baseline reliability of a component when it was fielded and maintained according 
to traditional design CWC-load spectrum methods. The process takes credit for an updated 
model of uncertainty that is provided by historical measured usage and loads data. 

Because a new reliability framework is needed to assess the probability of failure given fleet 
usage and loads data, it is important to also assess the baseline reliability of the original fielded 
part using the same framework. This ensures that any resulting extension of component 
retirement time is solely due to the measured usage and loads data. This process is shown in 
figure 33, which shows a baseline retirement time versus reliability curve calculated using 
traditional assumed uncertainties associated with strength, loads, and usage. The baseline 
reliability is determined by the intersection of the CWC-based retirement time with the baseline 
retirement time versus reliability curve. When HUMS-based measured usage and loads become 
available, the retirement time versus reliability curve is updated, which moves the curve to the 
right (less-aggressive usage and loads than assumed at design) or left (more aggressive). By 
measuring the percent change in retirement time at the baseline reliability, a retirement time 
credit can be applied based on the cumulative flight hours of the part at the time of the credit. 

An adaptation of this process is proposed whereby, rather than computing the updated retirement 
time versus reliability curve for every fielded component in a UBM credit application, a usage 
monitor reliability factor (UMRF) is developed for the specific application using the reliability 
framework to ensure 6–9’s. The UMRF is developed using a probabilistic fatigue modeling tool 
to understand the amount of conservatism that needs to be applied to usage data to maintain  
6–9’s reliability. This has the benefit of reducing the computation burden for each credit 
application and simplifying the approach. This modified process is shown in figure 34. 
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Figure 33. Proposed serial number UBM credit process 

 

Figure 34. Proposed serial number UBM credit process with reliability factor 

6.4  USAGE ERROR DISTRIBUTION THEORY 

Though the updated retirement time versus reliability curve is based on measured or estimated 
usage and loads data, the data may still have some degree of uncertainty associated with it. 
Probabilistic approaches to fatigue analysis can accommodate these sources of uncertainty. The 
following methodology was developed to assess the uncertainty associated with a cumulative 
measurement of maneuver usage. This methodology provides a means to model the uncertainty 
in a cumulative fleet or tail number usage metric when the usage error distribution is known only 
at the individual occurrence or instance level. For example, if a particular regime algorithm was 
known to provide accuracy to within 5% on the duration of an individual occurrence of a regime, 
this methodology allows that to be used to assess the accuracy, or the error, in a  
fleet-wide or tail number accumulation of many occurrences. This is important because any  
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fleet- or tail-number-based retirement-time credit calculation will be concerned only with 
cumulative usage metrics and their errors, not individual occurrences. A similar approach will be 
developed for accounting for the uncertainty in loads in the next phase of this program. 

Definitions: 

ua = Actual usage, measured in seconds. 

um = Measured usage, measured in seconds. This could be from RR or the clustering 
algorithm. 

ua,I = Single regime instance of actual usage, measured in seconds. 

um,I = Single regime instance of measured usage, measured in seconds. 

εt = Time-based usage measurement error, independent of actual length of regime (e.g., the 
error in the transition between regimes). 

ε% = Percentage-based usage measurement error, which is dependent on time spent in a 
regime. 

 ε% = 𝑢𝑢𝑎𝑎−𝑢𝑢𝑚𝑚
𝑢𝑢𝑚𝑚

 

μ = Various population means. 

σ = Various population standard deviations. 

σ2 = Various population variances. 

T = Total aircraft flight time. 

n = Number of instances of a given regime. 

Normal distribution: 𝑝𝑝(𝑥𝑥) = 1
σ√2π

𝑒𝑒−
(𝑥𝑥−µ)2

2σ2 , (−∞,∞) 

Coefficient of variation (COV) = μ/σ (non-dimensional). 

Case A: Error is dependent only on time spent in regime. ε% is the correct error distribution to 
define and use. 

 u𝑎𝑎 = �1
𝑇𝑇
�∑ �u𝑚𝑚,𝑖𝑖�1 + 𝜀𝜀%,𝑖𝑖��𝑖𝑖 = ∑ u𝑚𝑚,𝑖𝑖

𝑇𝑇𝑖𝑖 + ∑ u𝑚𝑚,𝑖𝑖
𝑇𝑇𝑖𝑖 ∙ ε%,𝑖𝑖 (6) 

 
 𝑃𝑃(u𝑎𝑎) = 𝑃𝑃 �∑ u𝑚𝑚,𝑖𝑖

𝑇𝑇𝑖𝑖 + ∑ u𝑚𝑚,𝑖𝑖
𝑇𝑇𝑖𝑖 ∙ ε%,𝑖𝑖� (7) 
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If ε% has normal distribution with mean μ and variance σ2, then the distribution of ua is also 
normal, with mean and variance given below: 

 µu𝑎𝑎 = ∑ u𝑚𝑚,𝑖𝑖
𝑇𝑇𝑖𝑖 + ∑ µ∙u𝑚𝑚,𝑖𝑖

𝑇𝑇𝑖𝑖  (8) 

 

 σu𝑎𝑎2 = ∑ �u𝑚𝑚,𝑖𝑖
𝑇𝑇
�
2

𝑖𝑖 σ2 (9) 

If ε% has a non-normal but symmetric distribution, or a non-symmetric distribution with a large n 
(n > 200), then the distribution of ua is approximately normal with mean and variance given 
below, where μ and σ2 are the mean and variance of the non-normal distribution. This result is a 
form of the central limit theorem. 

 µu𝑎𝑎 = ∑ u𝑚𝑚,𝑖𝑖
𝑇𝑇𝑖𝑖 + ∑ µ∙u𝑚𝑚,𝑖𝑖

𝑇𝑇𝑖𝑖  (10) 

 

 σu𝑎𝑎2 = ∑ �u𝑚𝑚,𝑖𝑖
𝑇𝑇
�
2

𝑖𝑖 σ2 (11) 

If ε% has a non-normal, skewed distribution with a relatively small n, then the central limit 
theorem does not apply. In this case, an exact distribution for the sum of random variables must 
be determined. Moment generating function methods are the key tool to be used. However, the 
exact distribution used must be known before any equations can be derived. The Weibull 
distributed for random variables does not have a closed form distribution. 

Case B: Error is independent of the time spent in a regime. The correct error distribution to 
define and utilize is εt: 

 u𝑎𝑎 = ∑ u𝑚𝑚,𝑖𝑖+ε𝑡𝑡,𝑖𝑖𝑖𝑖
𝑇𝑇

= ∑ u𝑚𝑚,𝑖𝑖𝑖𝑖
𝑇𝑇

+ �1
𝑇𝑇
�∑ ε𝑡𝑡,𝑖𝑖𝑖𝑖  (12) 

 
 𝑃𝑃(u𝑎𝑎) = 𝑃𝑃 �∑ u𝑚𝑚,𝑖𝑖𝑖𝑖

𝑇𝑇
+ �1

𝑇𝑇
�∑ ε𝑡𝑡,𝑖𝑖𝑖𝑖 � (13) 

If εt has normal distribution with mean μ and variance σ2, then the distribution of ua is also 
normal, with mean and variance given below: 

 µu𝑎𝑎 = ∑ u𝑚𝑚,𝑖𝑖𝑖𝑖 +𝑛𝑛µ
𝑇𝑇

 (14) 

 
 σu𝑎𝑎2 = 𝑛𝑛 �σ

2

𝑇𝑇2
� (15) 

If εt has a non-normal but symmetric distribution, or a non-symmetric distribution with a large n 
(n > 200), then the distribution of ua is approximately normal with mean and variance given 

66 



 

below, where μ and σ2 are the mean and variance of the non-normal distribution. This result is a 
form of the central limit theorem: 

 µua = ∑ um,ii +nµ
T

 (16) 

 
 σua2 = n �σ

2

T2
� (17) 

If εt has a non-normal, skewed distribution with a relatively small n, then the central limit 
theorem does not apply. In this case, an exact distribution for the sum of random variables must 
be determined. Moment generating function methods are the key tool to be used. However, the 
exact distribution used must be known before any equations can be derived. The Weibull 
distributed for random variables does not have a closed form distribution. 

Case C: The actual usage measurement error is not dominated by the time or % based errors, but 
is a combination of both. 

 u𝑎𝑎 = �1
𝑇𝑇
�∑�u𝑚𝑚,𝑖𝑖 + ε𝑡𝑡,𝑖𝑖��1 + ε%,𝑖𝑖� (18) 

 

 𝑃𝑃(u𝑎𝑎) = 𝑃𝑃 ��1
𝑇𝑇
�∑�u𝑚𝑚,𝑖𝑖 + ε𝑡𝑡,𝑖𝑖��1 + ε%,𝑖𝑖�� (19) 

As per this equation, the distribution of actual usage requires determination of the distribution of 
the product of random variables. This is an exceedingly complicated problem. For instance, the 
distribution of the product of two normal random variables with zero mean is given by the 
product normal distribution: 

 𝑃𝑃(𝑥𝑥𝑥𝑥) = ∬ 1
σ√2π

𝑒𝑒
− 𝑥𝑥2

2σ𝑥𝑥
2 ∙∞

−∞
1

σ√2π
𝑒𝑒
− 𝑦𝑦2

2σ𝑦𝑦
2 ∙ δ(𝑥𝑥𝑥𝑥 − u)𝑑𝑑𝑥𝑥𝑑𝑑𝑥𝑥 (20) 

=
κ0 �

|u|
σ𝑥𝑥σ𝑦𝑦

�

πσ𝑥𝑥σ𝑦𝑦
 

Where k0 is the modified Bessel function of the second kind and δ is the delta function. 

7.  UBM PROCESS DEMONSTRATION 

7.1  DESCRIPTION OF FLEET DATA 

The Army-AED provided SAC with three sets, or populations, of sample fleet data from 
operational UH-60M aircraft. Each set of data was collected from a different location, with two 
overseas locations and one U.S. location. Table 24 shows the quantity of tail numbers and flight 
hours contained within each set of fleet data. A distribution of fleet hours by tail number for each 
location is shown in figures 35–37. Across all the data that were provided, there is an average of 
60 hours per tail number, a maximum of 229 hours for one tail number, and an average usage 
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rate of 15 hours per month. These fleet data were used to assess the UH-60M CWC usage rates 
for climb and turns. 

Table 24. The UH-60M fleet data sets 

Location Tail Numbers 
Total Rotor 

Turning Hours 
A 29 1,820 
B 30 3,228 
C 32 568 

 

 

Figure 35. Fleet hours for location A by tail number 
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Figure 36. Fleet hours for location B by tail number 

 

Figure 37. Fleet hours for location C by tail number 

7.2  BASELINE REGIME USAGE STATISTICS 

RR usage statistics based on current IVHMU onboard algorithms were collected and analyzed 
first, before applying any clustering methods, to arrive at a baseline set of data for comparison. 
For the climb and turn regimes, both the worst case usage and mean usage were calculated from 
the fleet data for each location. Duration of time in both climbs and turns were calculated as one 
usage statistic relevant to both steady (climb) and transient (turn) regimes. For the turn regime, 
occurrences were counted and related to the CWC turn entry and recovery regimes. The percent 
time associated with entry and recovery was added to the steady portion for purposes of 
comparison against the cluster results. Baseline usage duration statistics for both climbs and 
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turns are shown in table 25, and the occurrence statistics for turns is shown in table 26. Fleet 
usage statistics that violate the CWC usage are highlighted in red. 

The most notable observation is that the worst case 30-degree turn occurrences for location C are 
more than double the CWC usage (see table 26). Also, the degree of exceedance of the 
occurrences is much worse than the associated duration statistics for turns. This is consistent 
with a known tendency of the current RR method to over-count occurrences and undercount 
duration. Also note that the usage statistics are much lower than CWC for the more damaging 
turn regimes having higher AOB. 

Table 25. Baseline duration usage statistics for climb and turns 

CWC Regime 

CWC Location A Location B Location C 

% 
Worst 
Case Mean 

Worst 
Case Mean 

Worst 
Case Mean 

CLIMB 4.20% 6.320% 4.090% 3.299% 2.208% 5.684% 3.716% 
TURN 30 L 4.17% 3.518% 2.498% 2.923% 1.139% 5.953% 2.782% 
TURN 30 R 4.17% 4.466% 2.512% 3.407% 1.101% 4.206% 2.089% 
TURN 45 L 0.71% 0.378% 0.138% 0.120% 0.034% 0.205% 0.038% 
TURN 45 R 0.71% 0.286% 0.117% 0.113% 0.025% 0.160% 0.036% 
TURN 60 L 0.15% 0.024% 0.003% 0.005% 0.001% 0.009% 0.001% 
TURN 60 R 0.15% 0.009% 0.001% 0.012% 0.001% 0.001% 0.000% 

 
Table 26. Baseline occurrence statistics for turns 

CWC Regime 

CWC Location A Location B Location C 

Occ/100H 
Worst 
Case Mean 

Worst 
Case Mean 

Worst 
Case Mean 

TURN 30 L 750 1248.3 850.8 957.8 435.6 2047.0 1045.4 
TURN 30 R 750 1417.8 831.5 890.5 410.6 1827.7 865.3 
TURN 45 L 170 156.2 51.8 51.0 15.3 151.6 27.5 
TURN 45 R 170 81.7 37.3 35.4 9.8 94.4 22.4 
TURN 60 L 77 12.2 2.1 7.5 0.9 25.4 1.1 
TURN 60 R 77 4.7 0.7 3.3 0.4 11.6 0.5 

 
7.3  CLUSTERING REGIME USAGE STATISTICS 

The regime clusters developed in section 4.3 were processed on the Army fleet data using the 
hierarchical approach discussed in section 4.1. The fleet usage statistics after applying the cluster 
definitions are shown in table 27 for steady state climb and turn duration statistics and in table 28 
for turn occurrence statistics. As anticipated, the turn duration statistics all increased while the 
turn occurrence statistics all decreased, or stayed the same in a few cases, as the result of 
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clustering. The largest reduction in occurrences was seen for 30-degree turns, because these 
regimes have the greatest opportunity for false positives during all higher AOB turns. Even after 
these reductions, however, the CWC usage for 30-degree turns is violated by the worst case tail 
number by both duration and counts in both locations A and C. Though the baseline results did 
not indicate any CWC violations for 45- and 60-degree turns, the clustering results show that 
locations A and C have several CWC duration violations by their respective worst case tail 
number. 

For climb, however, the duration statistics decreased, which was not expected. This was a result 
of the hierarchical approach for processing many clusters simultaneously. The clustering process 
for turns was applied ahead of the clustering process for climb, and many climb indications that 
were originally part of a turn sequence were removed from the results. Without clustering turns 
ahead of climb, the climb regime usage would be artificially high because of the prevalence of 
climb indications during non-climbing turns. By processing the more critical turn regimes ahead 
of climb, the hierarchical process gives the turn a higher priority in clustering climb occurrences, 
which has the effect of taking these occurrences away from the climb regime. 

To understand how the clustering algorithm performs on real-world fleet data relative to the 
baseline RR approach, a highly complex series of maneuvers was found within the fleet data. 
Within the sequence evaluated, three 45-degree turns, one 60-degree turn, and one severe pullout 
were flown within approximately 100 seconds. The roll angle from this maneuver sequence is 
shown in figure 38 with the baseline RR algorithm classifications overlaid. Figure 39 shows the 
same maneuver sequence classifications provided by the clustering approach, with the key 
transient maneuver classification labels enlarged and highlighted for readability. The  
non-highlighted regimes identified in this sequence are all either steady state level flight or 
partial power descent. This provides a visual example of how significantly improved the 
clustering approach is relative to the baseline RR approach at accurately detecting turns and 
pullouts even in a complex series of tightly packed maneuvers. The clustering results for this 
extended sequence of complex set of maneuvers agrees well with how a subject matter expert 
would classify it. 

Table 27. Clustering duration usage statistics for climb and turns 

CWC Regime 

CWC Location A Location B Location C 

% 
Worst 
Case Mean 

Worst 
Case Mean 

Worst 
Case Mean 

CLIMB 4.20% 6.26% 3.85% 2.87% 2.09% 5.44% 3.44% 
TURN 30 L 4.17% 4.43% 3.19% 3.57% 1.49% 8.42% 4.02% 
TURN 30 R 4.17% 5.63% 3.22% 4.42% 1.44% 5.81% 3.16% 
TURN 45 L 0.71% 0.99% 0.35% 0.31% 0.09% 0.82% 0.14% 
TURN 45 R 0.71% 0.66% 0.28% 0.21% 0.06% 0.68% 0.13% 
TURN 60 L 0.15% 0.13% 0.02% 0.09% 0.01% 0.18% 0.01% 
TURN 60 R 0.15% 0.03% 0.00% 0.02% 0.00% 0.05% 0.00% 
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Table 28. Clustering occurrence statistics for turns 

CWC Regime 

CWC Location A Location B Location C 

Occ/100H 
Worst 
Case Mean 

Worst 
Case Mean 

Worst 
Case Mean 

TURN 30 L 750 888.4 623.8 651.0 368.6 1731.8 830.9 
TURN 30 R 750 1000.5 629.0 673.5 347.4 1266.3 685.1 
TURN 45 L 170 129.4 43.0 48.3 13.7 151.6 26.1 
TURN 45 R 170 75.0 33.1 24.2 8.6 94.4 20.9 
TURN 60 L 77 9.8 2.1 7.5 0.9 25.4 1.1 
TURN 60 R 77 4.7 0.7 3.3 0.4 11.6 0.5 

 

 

Figure 38. Baseline RR output during complex maneuver sequence 
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Figure 39. RR clustering output during complex maneuver sequence 

7.4  UBM BENEFIT DEMONSTRATION 

The largest potential UBM benefit was for location B, which also had the most flight hours 
evaluated in this study. Occurrence statistics for 45-degree left turns were evaluated for each tail 
number in location B, as shown in figure 40. It was found for all locations, but highlighted here, 
that the worst case tail number is often among the group with the lowest flight hours within the 
population. For this example, the worst case turn occurrences statistic of 48.3 per 100 flight 
hours was from an aircraft with less than 50 hours of flight history. When considering the two 
aircraft with the most flight hours, indicated as tail numbers B5 and B11, the occurrence 
statistics were less than half that of the worst case. This highlights the need for establishing 
flight-hour minimums when evaluating aircraft usage history, which may be dependent on the 
regime being studied. For regimes that occur relatively frequently or as part of normal usage, 
such as 30-degree turns, the minimum flight hours may be much lower than for regimes that 
rarely occur, such as severe pullouts and 60-degree turns. For this sample benefit analysis, a 
flight-hour minimum of 50 hours was imposed. Using the worst-case turn results from location B 
for all aircraft with more than 50 hours, a set of location-specific CWC adjustment factors were 
developed and incorporated into the retirement-time analysis for the UH-60M main gearbox 
housing as a representative example. A retirement-time benefit factor of 2.7 was achieved by 
adopting the sub-fleet usage history for location B into the CWC. This factor implies that the 
CRT of the main gearbox housing can increase by a factor of 2.7 if a new CRT were developed 
for the sub-fleet at location B, assuming that the available data is representative of a statistically 
significant population and it was known that usage data would not vary significantly for this 
location. 
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Figure 40. 45-degree left turn occurrences for location B 

7.5  COMPARISON TO ARMY FLEET USAGE ANALYSIS 

The Army-AED provided SAC with a final report documenting a CWC usage study [6] on the 
same set of fleet data that was described in section 7.1. This report documented a methodology to 
mine parametric fleet data, calculate regime usage statistics, and generate an updated CWC 
usage spectrum based on the fleet data. A comparison of some results from the AED report to 
results generated independently by SAC is presented in this section. These comparisons were 
focused on climb and turn flight regimes only, and were limited to the subset of fleet data from 
location B, which had the greatest proportion of total flight hours within the fleet dataset. 

The first simple comparison is on the total flight hours from location B, which is identified as 
outside contiguous U.S. 1 in the AED report. For the UH-60, the CWC usage spectrum includes 
ground taxi conditions, which means that the accumulation of flight hours should include ground 
time with rotors turning. Both SAC and AED recognized this in the definition of flight hours. 
However, the actual count of flight hours did not precisely agree. SAC counted 3,228 “Rotor 
Turning Hours” using the duration metrics within RR output data for all regimes with the 
exception of “1:Power on Aircraft, Rotors Not Turning.” The AED report documented that there 
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were 3367 flight hours for the same location, but did not describe the method of counting. 
Therefore, a difference in methodology resulted in an approximately 4%, or 139 hours, 
difference in calculating flight hours alone. 

For the climb and turn regimes, the AED report did not provide tabulated results for average 
usage for each location, however it did provide mean plus 2-sigma updated CWC spectrum for 
each location. Following the same mean plus 2-sigma methodology for the climb and turn 
regimes, SAC generated results that can be directly compared to the tabulated results in the AED 
report. These results are shown in table 29. For the SAC results, both the baseline RR results and 
the RR with clustering results are provided for comparison of before and after clustering. 
Because the AED regime algorithms and thresholds were modeled after the existing Goodrich 
onboard RR algorithms, the baseline RR should be more aligned with the AED results. 

Several differences in the usage results were observed. For the climb regime, the AED result was 
30% higher than both the SAC baseline and clustering results. SAC could not investigate this 
discrepancy because of the limited details of how regimes were classified by AED. For the turn 
regimes, even greater differences of up to 50% were seen for the 30-degree turns for both the 
baseline and clustering approach, with the AED result showing a higher usage rate. The AED 
and SAC baseline RR results agreed fairly well for the 45- and 60-degree turns, whereas the 
AED results have usage rates 25–50% less than the SAC RR clustering results.  

The reason for the discrepancies seen in the turn results is understood to be a function of how 
percent time within turns is counted. The AED report shows a sample of regime definitions that 
defines a 30-degree turn to be when the roll attitude is between 10 and 35 degrees. Using this 
definition, any 45- and 60-degree turn would accumulate time within the 30-degree regime 
during the portion of time spent achieving and recovering from the target roll attitude. So if a  
60-degree turn is initiated and completed within 20 seconds, but only 10 seconds were actually 
spent within the 60-degree roll angle band, then AED accumulates only 10 seconds into the  
60-degree turn regime and the other 20 seconds into the 45- and 30-degree turn regimes. The RR 
algorithms onboard the IVHMS classify entire turns by the maximum roll angle, so the  
20-second turn that achieves a maximum roll angle of 60 degrees is mapped to the 60-degree 
turn regime for the entirety of the 20-second maneuver, which is a conservative approach for 
fatigue damage calculation. The clustering approach uses the same methodology to define a 
complete turn and goes further to ensure that the complete turns are indeed counted as a single 
turn and mapped to the correct AOB. The SAC approach of defining a turn is consistent with 
how maneuver loads are acquired and mapped to the CWC because a 60-degree entry and 
recovery by definition includes time spent in the lower AOB bands. This discrepancy in the AED 
and SAC methodology appears to both explain why AED is counting more time in the 30-degree 
turn regimes and less time in the 45- and 60-degree turn regimes than the SAC RR clustering 
results. 

Because the SAC methodology was developed with the intention of getting both accurate 
duration and occurrence statistics, the occurrences of turn entry and recovery regimes are derived 
from the occurrences of the recognized turns themselves. The AED results do not contain entry 
and recovery occurrences for comparison. The interesting observation in the SAC results, 
however, is the significant reduction in 30-degree turn occurrences after implementing 
clustering. 
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These results indicate that subtle differences in the implementation details of the RR algorithms 
can generate significantly different bottom line results. For fatigue analysis applications that are 
sensitive to the occurrence rates of banked turns, the various approaches can yield results that 
differ by up to 50% in assumed damage rates, and therefore generate different results for 
remaining useful life. It is recommended that these discrepancies be investigated further and 
reconciled between SAC and AED. However, it should be noted that both approaches are valid 
for determining usage as long as the methods used are well-documented and serve as the basis 
for calculating reliability factors to ensure safety.  

Table 29. The SAC-AED comparison of CWC usage results for location B 

Regime CWC Usage 
AED 

“μ+2σ” CWC 

SAC 
Baseline RR 

“μ+2σ” CWC 

SAC 
RR with 

Clustering “μ+2σ” 
CWC 

CLIMB 4.2% 4.17% 2.99% 2.81% 
TURN 30 L* 4.17% 3.770% 1.970% 2.480% 
TURN 30 R* 4.17% 3.880% 2.117% 2.726% 
TURN 45 L* 0.71% 0.100% 0.093% 0.235% 
TURN 45 R* 0.71% 0.070% 0.073% 0.144% 
TURN 60 L* 0.15% 0.010% 0.003% 0.039% 
TURN 60 R* 0.15% 0.005% 0.005% 0.011% 
E&R TURN 30 L 750 N/A 686 539 
E&R TURN 30 R 750 N/A 644 518 
E&R TURN 45 L 170 N/A 41 37 
E&R TURN 45 R 170 N/A 24 19 
E&R TURN 60 L 77 N/A 4 4 
E&R TURN 60 R 77 N/A 2 2 

 
*Includes entry and recovery time 

8.  DEFINITIONS 

Cluster: A grouping of neighboring HUMS regimes that represent a single CWC regime 
occurrence. This may be subject to a minimum length requirement corresponding to flight 
characteristics to minimize false detection. 

Cluster regime: A HUMS regime often found in close proximity to a target regime in a HUMS 
regime sequence report.  

Cluster set: The set of cluster regimes selected as part of the defining cluster parameters. 
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Cross-over: Time padded to the beginning and end of the cluster to accommodate possible errors 
due to HUMS RR resolution or update rate (typically 1 sec per current S-92 HUMS RR 
algorithm refresh rate). 

CWC regime: Standard maneuver used to develop CWC usage spectrum and to establish CRTs 
for life-limited components. 

CWC mapping: The general process being developed to take HUMS RR output and transform it 
into CWC maneuvers for the purpose of calculating CRT adjustments using existing life 
calculation methodology. The mapping can be accomplished by post processing the HUMS 
output with the clustering algorithm. 

HUMS regime: A regime determined by the onboard HUMS RR algorithms. 

Persistence: The maximum time in seconds to allow inclusion of a HUMS regime as part of a 
cluster vs. considering it as a legitimate separate entity. 

Target regime: A HUMS regime that is physically close to the CWC regime of interest, usually a 
principal damaging regime, which must be identified by HUMS RR to form a cluster. This may 
be subject to a minimum length requirement corresponding to flight characteristics to minimize 
false detection. 

Target set: The set of target regimes selected as part of the defining cluster parameters, if more 
than one target regime is used to identify with the CWC regime of interest. 

Validation matrix: A table that contains data to quantify RR and clustering methodology 
accuracy for a set of CWC maneuvers of interest. 
 
9.  CONCLUSIONS 

This report documents the technical work done under delivery order (DO) 0001 with a focus on 
developing and demonstrating methods for validating and applying several usage and loads 
monitoring technologies to fleet data to achieve meaningful results to support a usage-based 
fatigue life management or usage-based maintenance (UBM) process. Using a regime 
recognition (RR) clustering approach, regime cluster definitions were developed and validated 
for two critical regimes using a unique set of flight test data generated by the Army 
Communications-Electronics Research, Development and Engineering Center during their flight 
test. An enhanced regime validation approach was developed in response to the challenges 
encountered when analyzing regime performance and interactions among a large set of regimes. 
It was shown how RR can be used to capture maneuver load statistics by using the RR data as a 
capture window, similar to how flight loads are collected in a flight loads survey program. This 
approach provided valuable insight into the performance of regime algorithms and their ability to 
capture the significant damaging load events. The RR clustering algorithm was shown to be a 
viable approach for refining raw RR output data to support either fleet-wide usage calculated 
retirement time (CRT) adjustments or individual tail number CRT adjustments without having to 
modify existing onboard software. The clustering algorithm provides a more realistic picture of 
helicopter usage than the baseline Integrated Vehicle Health Management System RR 
algorithms, even in the presence of a complex series of maneuvers. 
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Virtual monitoring of loads (VML), gross weight (GW), and center of gravity (CG) estimation 
algorithms were shown to be viable approaches for monitoring actual aircraft usage and loads. 
Though neither of these virtual methods is perfect, the error distributions are reasonable and  
well-behaved, such that error models can be created for use in a probabilistic framework for 
establishing reliability factors to ensure safety and reliability associated with UBM processes and 
credits. 

A serial-number-based UBM approach was proposed that leverages a probabilistic reliability 
method to maintain 6–9’s reliability when applying these methods to fleet data to calculate usage 
credits. This process maintains the reliability inherent in the traditional fatigue retirement time 
and handles the residual uncertainties present in RR, VML, or GW/CG-based fleet usage metrics. 

Applying these usage monitoring technologies to fleet data uncovered some challenges that are 
unique to an operational fleet environment. The focus of work conducted within DO 0002 will be 
to apply these methods to operational fleet data within a production framework in support of a 
specific mock UBM certification that will be shown to be in compliance with Advisory Circular 
29-2C, MG-15 [7]. This effort is ongoing and will be documented in a separate technical report 
for that DO. 
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